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ABSTRACT

Four methods for determining the geometric elements
of an eclipsing binary from its light curve are explored
in detail. The methods discussed are those of Russell
(specifically, the version due to Tabachnik), Kitamura,
Kopal (frequency domain approach), and Wood. In each case,
the underlying model of an eclipsing binary system is dis-
cussed. The various methods of light analysis are then
applied to the eclipsing binaries HS Herculis, W Delphini,
and HD 219634. The results of each analysis are discussed,
and the various methods of analysis are compared with one
anothef. Finally, the relative merits of each model of an
eclipsing binary system are considered. Computer programs
for the various methods of light curve analysis, along with

explanations of their use, are presented in the appendices.
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CHAPTER 1
INTRODUCTION

Eclipsing binary stars are, in many ways, very
informative to the astronomer and astrophysicist. The
study of eclipsing binary stars can reveal a great deal
about the sizes of stars, their masses, densities, and
internal structure. Such information is also valuable in
ascertaining the evolutionary state of the two (or more)
stars constituting an eclipsing binary system. In certain
cases in which the two component stars of an eclipsing
binary system are in close proximity to one another, it is
also possible to deduce the amount of tidal distortion
present, and to check for the presence of matter streams
between the two stars. With all of this information in
hand, a scale model of an eclipsing binary star may be
constructed, and hence, our knowledge of the system will
be complete. One may then use this scale model to look for
long-term effects such as apsidal motion, the presence of
which can be deduced from a secular‘change in the period of
the eclipsing binary. Such measurements may also be used
to verify Einstein's theory of General Relativity.

The key problem, however, is in interpreting the
observed light changes (the 'light curve') of an eclipsing
binary. This is the critical step which lies between mak-

ing the observations and coming to the conclusions outlined



in the previous paragraph. To this end a great deal of
work has been done, from the first tentative steps taken
by Russell in 1912 (Russell, 1912), which dealt with the
determination of the geometric elements (the relative radii
of the stars, the orbital inclination angle, and the rela-
tive luminosities) of an eclipsing binary consisting of
non-limb darkened spherical stars, to the recent Fourier
analysis methods of Kopal (see for instance, Kopal, 1979),
which use the harmonic content of the observed light
changes to deduce the geometric elements.

A necessary ingredient in all methods for determin-
ing the geometric elements from the observed light changes
is a realistic physical model of the binary star, preferably
involving as few assumptions as possible regarding the
forms of the stars (i.e., spherical, non-spherical) and
their physical properties (temperature, luminosity, etc.).
The complexity, and consequently the realism, of such models
of eclipsing binaries has grown since the initial investi-
gation of the problem by Russell in 1912. Present day
models of eclipsing binaries describe a range of situations,
from that of two well-separated spherical stars to systems
in which both stars are in contact, in which case both stars
are greatly distorted by their mutual tidal interaction.

A gquestion of some importance is then: which of the several
models of eclipsing binary stars currently available best
describes a given eclipsing binary star? To answer this

question, representative models of eclipsing binary stars



and their accompanying methods of light curve analysis will
have to be analyzed and the appropriate conclusions drawn.
There are three broad categories of methods used in
light curve analysis. They are the "classical" or "Russell-
type" methods previously referred to, the "synthesis"
methods, devised in the early 1970s, and the "frequency-
domain" methods of Kopal previously referred to. Two
methods of the "classical" type are the Russell-Merrill
(1952) method and the method of Kitamura. A fine example
of a "synthesis" method is a method devised by Wood. Seve-
ral versions of Kopal's frequency-domain method exist, but
the best of these are the most recent ones (e.g., Kopal
(1982)). These methods of light curve analysis will be
applied to three stars covering a wide range of physical
conditions, from the well-separated case of W Delphini,
to the case of HS Herculis with its matter stream, and
finally to HD 219634, which may be a massive binary and
possibly even an X-ray source (see Gulliver, Hube and Lowe
(1982)). This analysis will, we hope, shed some light on
the validity of the various models of eclipsing binary stars

to be considered.



CHAPTER 2

THE RUSSELL MODEL

2.1 General Principles

The first steps toward an interpretation of eclips-
ing binary light curves were taken by Russell in 1912
(Russell (1912a,b)). Subsequent refinements to the theory
were made by Russell and two collaborators, Merrill and
Shapley (see Russell and Shapley (1912); Russell and Merrill
(1952)). The Russell model can be applied to both spherical
and non-spherical stars with varying degrees of accuracy.

The "sphericalvmodel" assumes that the eclipsing
binary system consists of two spherical stars moving in
circular orbits about a common centre of gravity. The dis-
tribution of surface brightness J(y) over the disk of each

star is assumed to follow the "cosine law"
J(y) = J(0)(1 - X + Xxcosy) (2.1)

where J(0) is the surface brightness at the centre of the
observed disk of either star, x the coefficient of limb
darkening, and y the angle of foreshortening, or the angle
between the line of sight and a radius vector from the
centre of the star (see figure 1). The angle y varies
between 0 and 90 degrees. At this point, it should be
noted that the physical properties of the stars enter the
Russell model only through equation (2.1). The detailed

features of the stars (e.g., starspots, magnetic fields,
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intrinsic variability) are not accounted for.

To arrive at a method for determining the geometric
elements of an eclipsing binary using the spherical model,
it will be necessary to consider, in some detail, the
geometry of an eclipse. The treatment that follows is
similar to that given by Irwin (1962) or Russell (1912a,b).
Before plunging headlong into this problem, it will be
necessary to define some of the quantities that will be
used. The radius of the smaller star is denoted by Ty and
that of the larger star by rg. These radii are measured in
units of the centre-to-centre separation of the component
stars of an eclipsing binary. The relative luminosity of
the small and large stars will be denoted by LS and Lg,

respectively. These luminosities are so defined that
L + L =1. (2.2)

Since an eclipsing binary light curve displays brichtness
as a function of time, it i1s necessary to define an orbital

phase 6 by

where P is the period of the eclipsing binary, t the time

at which the brightness was observed or is to be calculated,
and tO the time of conjunction, which usually coincides with
the time of minimum light during the primary (deeper)
eclipse. The times t and tO are measured in Julian days,

while the period P is measured in days. With explicit



reference to the eclipse, it is customary to define three
additional quantities, namely k, p, and §. The dimension-
less parameter k is simply the ratio of the radii r_ and
o
g
_ s
k = ' (0 < k < 1)

The "geometric depth" p is another dimensionless parameter,
which represents the extent to which the eclipse has pro-
gressed at any eclipse phase 6. A parameter closely
related to p is §, the apparent separation of the centres
of the disks of the stars. The parameters p and § are
shown in figure 2. The following equation gives the rela-

tionship between p and § (and does, in fact, serve to

define p)
O
p = _“3?41 (2.3a)
s
or
§ = rg(l + kpl ., (2.3b)

using the definition of k stated above. Relation (2.3b) is
the more useful of the two relations relating p and §. The
quantity 6§ may also be related to the phase 6 and the orbi-
tal inclination. The orbital inclination is defined as the
angle between a plane perpendicular to the line of sight
(the "celestial sphere") and the orbital plane (see figure
3). Through the use of some simple trigonometry, and
recalling that the two stars constituting the eclipsing

binary have a unit separation, one arrives at the "geometri-

cal relation":
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62 = coszi + sin26 sinzi =].—sin2i 00526

o

r;(l+-kp)2==coszi + sin26 sin2i . (2.4)

Equation (2.4) is the fundamental equation of all Russell-
type methods for the determination of the geometric elements.
The derivation of the geometric relation is outlined in
figure 4. It should also be noted that only a relative
orbit is considered, namely, the relative orbit of the
smaller star about the larger one. In the case of an ellip-
tical orbit, the geometric relation would be multiplied by
R2, R being the separation between the stars at any orbital
phase. The orbital phase would have to be replaced by v=-w,
where v is the true anomaly and @ the angle between the
line of apsides and the line of sight. The vast majority
of eclipsing binary systems have circular orbits, however,
largely as a consequence of their short orbital periods and
consequent tidal interations.

As an aid in the interpretation of eclipsing binary

light curves, a relative luminosity 2 is defined. This

luminosity is related to a change in magnitude Am by

5 = 10-0.4Am (2.5)

where Am is taken relative to the magnitude of the eclipsing
binary just before the start of the eclipse. The value of
2 at the minimum of the eclipse is denoted by A. A quantity

a = o(k,p) is also defined; representing the fractional

10
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1r2

light loss. At any eclipse phase (see figure 2). This

quantity may be determined directly from the observations

by
_1-3
T (2.6)
2 =1 - gL

2.2 Total and Annular Eclipses

We are now in a position to describe Russell's
method for the determination of rs, rg, and i. The follow-
ing derivation may also be found in a recent book by Kopal
(1979, pg. 110). The basic idea of the method is to write
down the geometric relation (eqn. (2.4)) for three eclipse
phases and to consider sinzi, coszi, and ré as the unknowns.

For the system of equations to have a unique solution,

- 2

sin el (lﬁ-kpl) 1
. 2

sin 62 (14-kp2) 1 =0 . t2,7)
. 2 2

sin 63 (1+-kp3) 1

In this equation, k is the only unknown, since p can
in principle be determined from o (k,p). The phases 61 and
62 are chosen so as to correspond to a=0.6 and a=0.9
respectively. From this point on, the method used to de-
termine L and 1 depends on the type of eclipse. It
should also be noted that the entire light curve is not

required for the analysis. Only one half of an eclipse 1is

required.



For a total or annular eclipse (see figure 5), the

determinant in equation (2.7), is written as

. 2
sin 83 = A + B ¢v(k,p) {2.8)
where
.2 _ _ oo
A = sin el . B =A sin 62
and 5 5
2(py-py) + k(p3-p])
Ip(krprO(') = o (2.9)

2 2
2(p; = p,) + k(pi-p3)

If sin263 is allowed to represent any eclipse phase, then

A and B may be determined, and finally ¥ (k,p,a) for the
given 63. Thus, one tabulates VY (k,p,a) for all eclipse
phases. Uy (k,p,0) can also be tabulated using equation (2.9),
SO a comparison between the observed and theoretical values
of P(k,p,a) can be made, allowing k to be determined for
each eclipse phase. Russell tabulated VY (k,a) for both types
of eclipse, but the most comprehensive tabulation was that
of Russell and Merrill (1952). A shorter and more useful
set of tables (for x=0.5) was published by Irwin (1962).

To summarize, one finds a value for k by determining ¥ (k,a)
from the light curve by equation (2.8), and by using these
observed values of Y (k,a), along with the corresponding
values of a determined by equation (2.6), to do inverse
interpolation in a table of Yy (k,a), thereby producing a
range of values for k. An average of the values of k is
taken, and this number, <k>, is then taken to be the

'correct k' in later calculations. The inclination i and

the radius rg can now be found from

13



(2.10)

2 B 2
cot 1 = ¢2(k) A and (rgm:sc i) = I

1

where ¢l(k) and ¢2(k) are two auxiliary functions also
tabulated by Russell and Merrill in the reference quoted
above. The value of r_ can now be found by using the defi-
nition of k.

The method of finding I rg, and i just described
was modified by Russell and Merrill (1952) to use more
points on the light curve during an eclipse. This 1is
achieved by using three weighted means of sin26 and Yy (k,a),

and by defining a new function R (x,k)

. 2 . 2
M. [sin“8] = M. [sin“8] M. [¢y]-M_.[Vy]
R(x,Kk) = — B — -

- 4 (2-11)
M,[sin®e] - M [sin®e] Mal¥] = ¥30¥]

Mj[sinze] =a+BMIV], 3=1,23

where Mj[sinze], j=1,2,3, is a weighted mean of sin26 for
certain values of o, and Mj[w], j=1,2,3, is the correspond-
ing weighted mean of Y (k,a). Only one table is required to

z 2

find k given R(x,k), Ml[sin 6], M sinze], and M,[sin"6].

S N
The values of Ty rg and i are obtained as in the earlier

version of the Russell method. The version just described,
known as the 'Russell-Merrill' method, has the advantage of

simplicity and greater computational speed, and will be used

in subsequent examples.

14
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2.3 Partial Eclipses

In the case of a partial eclipse (see figure 5), a
different approach is required. The problem is more diffi-

cult to solve since observations of both eclipses are

required for a unique solution, and the value of o at mid-
eclipse (denoted by ao) is also unknown. At mid-eclipse,

the geometric relation (2.4) becomes

2. 2 2
cos 1-—rg(l+—kpo) r Py = p(k,ao) (2.12)

since 6 =0 at this point. Upon subtracting this result

from the geometric relation, one has
O 2. ' 2 2
sin 6-—(rsrg csci)[2(p po)i-k(p -po)] : 2l 3

This is the fundamental equation for the analysis of partial
eclipses. Russell's approach (Russell, 1912b) was to first
define n as the ratio of 1-%2 to 1-A at any eclipse phase,
and to take the value of sinze at n=0.5 as a 'base point'.
Russell then divided equation (2.13) by its counterpart at

n=0.5, obtaining

2 2

. 2 2(p—plibk(D =D )
51n28(n) E o) 5 g = X(klao;n) (2.14)

sin“6 (0.5) 2(pl—po)4'k(pl-po)

where 6(0.5) denotes the value of 6 when n=0.5, ©6(n) the

value of 8 for any other n, and Py the value of p at n=0.5.
In the analysis of partial eclipses, the x-functions play a
similar role as do the Y-functions in the analysis of total

and annular eclipses. However, in the partial eclipse case,
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the solution is graphical. The values of X(k,ao;n) may be

computed from the light curve by using the left-hand side

of equation (2.14). Since k and a, are to be solved for
first, only two values of y are needed. Suppose these
values to be denoted by X=cq and X=Cye One may also com-

pute x from the right-hand side of equation (2.14), and
therefore tabulate x(k,ao;n). The most complete tables of
X(k,ao;n) are those compiled by Russell and Merrill (1952),
which can be used for both occultation and transit eclipses
and any value of limb darkening x. After choosing a value
of x, one uses the y—-tables to plot o as a function of k
for the given values of ¥, namely Cq and Cye Therefore,

the point at which these curves intersect should provide
the required values of k and Q- Unfortunately, the solu-
tion obtained is indeterminate since it is not known whether
the given eclipse is an occultation or a transit. Therefore,
both eclipses must be used. The type of eclipse may now be

determined quite easily by using the relationship (see

Irwin (1962), p. 607)
Xoc(k,oco;n=0.8) > xtr(k,oco;n=0.8) (2.15)

where 'oc' denotes occultation and 'tr' transit. This
relation may be verified by consulting the appropriate
tables of x for n=0.8. Another problem arises in the fact
that the intersection of the two Y = constant curves can be
quite shallow, resulting in an indeterminate solution once

again. To remove this indeterminacy, another independent

1
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relation must be introduced.

If A denotes the value of minimum light for either

eclipse, then
)\zl— =
aOL (LS + Lg 1)

where L is the relative luminosity of either star. If one

writesthis out for both eclipses and solves for o there

results

1-2

agc = 1-X_ + ___*b for an occultation
a 2
k7Y
(2.16)
eve N N 2 ‘ :

ao 1 Abﬁ-(l Ka)k Y for a transit

where Xa and Ab represent A for occultation and transit
eclipses respectively and Y denotes the ratio agc/agr.
Either of equations (2.16) is known as a "depth" equation,
since such equations relate the depth of an eclipse (1-))

to a and k. Equations (2.16) are incorporated in the solu-
tion method for partial eclipses byv obtaining values of k
and o for successivg values of Y. Tables of Y(ao,k) exist
(Irwin (1962) gives tables of q_(k,aSC =k2Y(k,agC) ) for
this purpose. The set of values of k and a, so obtained are
plotted on the same graph as are the equations for y =
constant mentioned earlier. The curve so defined will
usually make a steep intersection with the ¥ = constant

curves, thereby rendering the solution determinate. An

example of such a graph is shown in figure 6.
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FIGURE O, THE GRAPHICAL SOLUTION FOR
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20

The preceding paragraphs have described the form of
the Russell-Merrill method that is most useful for the
analysis of total and annular eclipses, but which for el
tial eclipses is not the best nor the most useful approach.
In fact, Kopal (Kopal, 1979, pp. 113-114) has argued strongly
against the use of the yx-functions for determining the
orbital elements. The essence of his criticism is that the
position of any 'fixed' or 'base' points, as used in the
Russell-Merrill method, can be determined only to some
finite accuracy, and that this uncertainty would propagate
through the entire light curve solution, leading to an un-
17 %5 and 1. Furthermore, the

solution is fitted only at the 'fixed points', not at all of

certainty in the values of r

the data points. One could imagine a "worst case" in which
a rather large initial error would propagate and magnify
through the solution, leading to wildly erroneousresults.
It is situations such as these which have led other workers

to use other versions of the Russell-Merrill method.

2.4 A General Formuiation

The Russell-Merrill method may be restated in a form
useful for any type of eclipse, and moreover, in a form that
is amenable to use with electronic computers. This method,
due to Kopal (see Kopal (1979), pg. 115), takes the geometric
relation and rewrites it in the form y=ax+ b, which is

linear. If one defines

2
X = sin26 and y = (1+kp)
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then the geometric relation may be written in the form

X = (rgcsc i)2y - cot2i
or
sinzi coszi
YV = —-———-2 % -+ -———-—-2 i (2.17)
rg E

this latter form being suggested by Tabachnik (1973).

The elements rg, Iy and i may be found from the following

equations, where a==sin2i/r§ and b==coszi/r§:

2. =1/2
tan 1= , r = (a+b) and r =kr . (2.18)
g S g

Olp

If an initial value of k is used to determine p from a
table of a(k,p), then the correct value of k will be the
one that renders equation (2.17) a straight line. The
straight line is fitted using the standard least-squares

technigques. A good initial guess at k can be made in seve-

ral ways. The simplest is to use the formula
o' -@gnm
kK = grzar

where 0' is the phase angle of first contact and 6" the
phase angle of second contact (see figure 7 for definitions
of 6' and 6"). Other methods are given in Appendix 1. The
advantage in using equation (2.17) lies in the fact that all
available eclipse data are used, and no special points on
the light curve are required. Moreover, one can use any

o (k,p) table, for either an occultation or a transit, and
for any limb darkening to determine p(k,a). Therefore, this

version of the Russell method is clearly the preferable one.
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The present author has written a program for the T1-59 pro-
grammable calculator to use equation (2.17) in the analysis
of eclipsing binary light curves. The values of sin26 and
p are used as input. The T1-59 calculator is particularly
convenient since it has a built-in least-squares linear fit
routine, which can be easily incorporated into a larger
program. This program will be used in later sections when
particular stars are considered. A listing of the program
is presented in Appendix 1. A computer program, LINE, in-
corporating Tabachnik's method, is also listed in Appendix 1.
Before discussing the application of the Russell
method and the Russell-Merrill method to close eclipsing
binary stars, it should be mentioned that several other
versions of the Russell-Merrill method exist in the litera-
ture. Most of these are due to Kopal, in particular the
iterative methods (based on equation (2.13)), which have
proven to be very useful. These methods are conveniently
summarized in the 1979 book by Kopal. A computer program
incorporating an iterative method has been published by
Jurkevich (1970). An important variation due to Kitamura
(1965), which employs Fourier transforms of the light curve,
will be considered in the next section. Some methods which
are no longer in use are those of Scharbe (1925) and Fetlaar
(1923). The latter method is summarized in a book by
Tsesevich (1973), which also contains a description of a
method called the 'express method'. A recent revival of

Kopal's iterative methods may be found in Look et al. (1978),



which alsoc contains an interesting application of the depth

equation.

2.5 Non-Sphericity and Rectification

Naturally, one cannot apply the Russell-Merrill
method (or any one version of it) to all eclipsing binary
stars. Not all eclipsing binary stars have spherical compo-
nent stars since there are inevitably tidal effects in any
close system. Those eclipsing binaries with relatively
short periods, less than about 3 days, will most certainly
have some tidal distortion present, since the two stars
involved will be quite close to one another (Kepler's har-
monic law: Pza a3). There are often other associated
effects. An obvious one is that one star will heat the
other, the effect being a mutual one. When first discovered,
this effect was called the "reflection effect", since it
was believed at the time that light from one star was re-
flecting off the surface of the other: Though inaccurate,
the name stuck. As the theory of stellar atmospheres
evolved beyond the well-known "gray" case, it was realized
that the "reflection" effect was really a heating effect.
The reflection effect has become one of the most difficult
effects to understand, and hence model, since the magnitude
of the effect depends not only on the closeness of the stars,
but also on the state of their atmospheres. The problem as
it currently stands is summarized by Sahade and Wood (1978).

A comprehensive study of the reflection effect, typical of

many done, is that done by Napier (1968).
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Another effect present in eclipsing binaries is a
direct consequence of the closeness of the component stars.
This is the presence of streams of matter between the stars.
Matter streams can arise in two ways, the first being the
presence of one star with a moving atmosphere (stellar wind).
Wolf-Rayet stars and red giant stars can be involved in
this type of mass exchange. A mass exchange can also arise
if one star expands out to its Roche limit (see figure 8).
Some of the matter from the expanding star is then drawn
off by the other star (through its gravitation), with the
result being either an accretion disk or a "hot spot",
where the matter stream makes contact with the atmosphere
of the attracting star. In the Russell model, the effects
of tidal interaction, reflection, and mass transfer are
dealt with by the process of rectification.

The dynamical and physical theory upon which the
process of rectification rests will not be developed here.
A comprehensive treatment may be found in an article by
Martynov (1973) in the book edited by Tsesevich (1973).

The treatment to be followed here is that given by Proctor
and Linnell (1972). The Russell model treats the stars of

a close eclipsing binary as prolate spheroids (see figure9),
although the results obtained at the end of the rectifica-
tion process can be converted into results applying to a
triaxial ellipsoid. The object of rectification is to
convert the light curve of an eclipsing binary consisting

of distorted stars into an equivalent "spherical" light
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curve. Thus, rectification produces a rectified luminosity
Qr and a rectified phase Gr, given unrectified values of 2
and 6. More rigorously, if an observer at point 0, having
direction cosines ¢, m, n is watching an ellipsoidal star in
a close binary system, then the process of rectification is
an affine transformation that carries the observer at 0 to
another point 0', with direction cosines &', m', n', at the
same distance from the sphere. Since the transformation
carries an ellipsoid into a sphere (with a radius equal to
the ellipsoid's semi-major axis), then the luminosity of the
spherical star, as seen at 0', must be the same as that seen
from the ellipsoid at 0. Since the light from the ellipsoid
varies with phase, the light from the sphere must be modu-
lated to produce the same light variation. The affine
transformation is illustrated in figure 10. It was shown by
Russell and Merrill (1952) that the light variation from a
prolate spheroid with axes (a,b,b) is the same as that from
a triaxial ellipsoid having axes (a,b,c). If the orbit has
an inclination j in the prolate spheroid case and i in the
ellipsoid case, then the semiaxes b and c of the triaxial
ellipsoid are related by

2. C2

i < . (2.19)

tanzi b
Before proceeding further, it is necessary to define
some parameters that will be used in the discussion that

follows. The oblateness € is defined as (a-b)/a, a and b

being the semiaxes of either the prolate spheroid or the



29

'$SA00Ud NOTLVILAILI4Y SHL ()T Junui4

NOTLVWHOASNVYHL INIA4VY

-




30

triaxial ellipsoid. An approximate expression for e is
y 2 . . .
5N , N being the eccentricity of the cross-section of the
star in the orbital plane. It will also be useful to de-
fine z, which i fet her i

z, which 1s equal to 2€ sin”j. A non-spherical star
will not have a uniform surface gravity, and consequently,
those parts of the surface of the star farther {rom the
star's cent er will appear cooler, while those parts c s
to the cent er (near the pole of rotation) will a_ . ==
hotter. A quantity that describes this effect is the
gravity darkening coefficient y, which is defined by

i & Kok T STy
~

@ 8 5. ENEs e

~J
(68}

y = 2 (2'20)
4AT_ (1 - e “ )
)

where A is the wavelength of observation, T_ the surface

temperature, and 5 (equal to hc/k) is a numerical constant
whose value depends on the units of A and TO (see Gray
(1976), pg. 117). Therefore, the observed intensity at

any point on the star's surface will be

1
'
4
\
3
)
=

1
i
\
0]
t

t(

Q)

t
t
i

where H is the intensity at the centre of the obscr . -=2d disk,
x and vy are defined in cquation (2.1), g is the surface
gravity at any point on the star, and 9, is a reference
value of g, usually taken to be the value at the pole of
the star. The light from either star can be expressed as

(Pusecil ad eyl (1982, pg. #¥3):

¢
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2(68) = I(90°) (1 - Ne sin®jcos?8) +G £ (¢) (2.22)
where
_ 15+ x
YT I5-s5x (1TY) .

In this formula, I(90°) is the light from one star at qua-
drature phase (6==9OO), G is an 'albedo' factor that deter-
mines the fraction of light received from the companion
star which is reradiated at the wavelength of observation
(Russell and Merrill (1952), pg. 46), and f£(¢) is a 'phase
function' that characterizes the reflection effect. The
procedure of rectification is one in which the effects of
reflection and ellipticity are removed by writing out the
equation for 2(6) for both stars, finding the sum of these
two equations, and then doing the appropriate subtraction
and division to produce the value of 2(8) for a system
consisting of spherical stars. In practice, rectification

is done by fitting a Fourier series of the form:

L(0) = AO+Alcosﬁ+Azcos 20 + BlSan + B2 sin 26 (2.23)

to the light curve df the eclipsing binary outside the
eclipses (one may use cosze and sin28 instead of cos 26 and
sin 20, by making use of a trigonometric identity, but the
coefficients will then take on different meanings). The
series may be fitted either by the least-squares method, or
by a graphical method developed by Russell and Merrill. An
example of the latter may be found in Appendix 1. The rec-

tified light is then given by



- Qobs - (Bl 51116+B2 sin 29)
Qrect - 1 T
5 AO+Al cose+A2 cos 26
and the rectified phase by
sin 6
sin 6 = obs
Eeck (l-zcos28 )
obs
and
5
_ 1- 2
coserect-— 5 cos eobs , (2.26)
l-zcos™ 6
obs

where both equations are required for proper quadrant de-
finition (in taking an inverse tangent, an electronic
computer uses the range -n/2 < 6 < /2, rather than 0<6 < 2m,

which is the range of 60 ). These formulae apply to all

bs

observations, both in and out of eclipse. The factor z may

be obtained empirically by using the approximate relation

Z ]2A2 . It should also be noted that the presence of the
sine terms in the Fourier series for 2(6) is not justifiable
physically; their only purpose is to take care of any extra
'complications' that might arise. This then is the process
of rectification as developed by Russell and Merrill. The
end product is a light curve that is flat outside the
eclipses, with the eclipses being those appropriate to
spherical stars.

The process of rectification is open to criticism
on several grounds. The first, and most obvious, is the
presence of the sine terms in the Fourier series for 2(98).

The presence of such terms should be justifiable from a

physical point of view, but the present author knows of no
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such justification, published or unpublished. Another cri-
ticism, raised by Kopal (1979, pg. 192), is that one is using
a Fourier series outside its range of validity, since a
series, which has been fitted to the out-of-eclipse obser-
vations is being applied to all observations, both in- and
out-of-eclipse. Rectification will work for systems in
which distortion effects and the reflection effects are
minimal. The example in Appendix 1 is of this variety. In
cases such as these, the Bn-terms are quite small in com-
parison to the An—terms. However, one really cannot apply
rectification to highly distorted systems (very close
binaries, e.g. W Ursae Majoris). In systems such as these,
the shapes of the stars depart greatly from an ellipsoidal
form, and actually approach a Roche-surface form. The
theory upon which rectification rests is clearly not de-
signed with such systems in mind. Consequently, rectifi-
cation is no longer used, and more physically acceptable

procedures have replaced it.

2.6 Differential Corrections

If the geometric elements Ly r Ty i,Ll ,I? roXq
and X, are well-determined (in the sense that the solution
for these elements is determinate), one may improve the
values of these elements by the 'differential corrections'
procedure. Differential corrections are based on the idea

that if

2(8) = u - ak (u = 2(90°)) (2.27)



then
A% (6) = Au - oAL - LAa
N Ja
= Au - oAL - L Z = ij , (2.28)
=1 ==y
where xj is one of the elements rl,rz,jq Xy or X,.

Equation (2.28) may now be regarded as an equation of con-
dition, so that if this equation is written out for each
(6,%) pair, one may solve the system of equations for Axfs,
Au, and AL by the least-squares method. The value of A% is
found by subtracting the calculated value of £ from the
observed value (i.e., an '0O-c'). The various partial de-
rivatives appearing in equation (2.28) have different forms
according to the eclipse type. The form of o must also be
chosen according to the eclipse type. The paper by Irwin
(1947) describes the procedure of differential corrections
in great detail, and tables of the various derivatives are
provided in an appendix to the paper. The present author
has written a number of computer programs for performing
the differential corrections procedure using the values of
the derivatives from Irwin's tables or values generated by
the equations for the derivatives. Some of these programs
may be found in Appendix 1. It should be noted that one
cannot apply differential corrections to every eclipsing
binary star, since, as mentioned earlier, a well-determined
set of elements is required, as well as a large number of
observations to make the least-squares method truly appli-

cable. Least-squares differential corrections should not

34



be regarded as a 'black box' that always generates improved
values of the elements, therefore it should be applied with
some discretion. As Irwin mentions in the paper quoted

earlier, least-squares is no substitute for good sense!

2.7 Conclusion

The discussion of the Russell model and the method
of light curve analysis associated with it is now complete.
This model of an eclipsing binary star is best applied to
systems having spherical components, since any application
to systems having distorted stars will inevitably lead to
the use of rectification, the validity of which is in some
doubt. The Russell-Merrill method is still used to provide
a preliminary set of elements to be used in more advanced
methods of light curve analysis. In short, the Russell-
Merrill method is not the most fruitful one, since it 1is
possible to derive much more information from a light curve.
It would also be of some advantage to have a method of

analysis tailored for use on an electronic computer.
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