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Abstract—The Holzer tabulation method for determining the natural frequencies of multi-
degree of freedom torsional systems is relatively easy to automate on a computer
or a programmable calculator. The Holzer method has been extended to trans-
lational systems consisting of masses and springs configured so that the model
starts with a mass and ends with a mass. For example, the method has been used
to determine the natural frequencies of freight trains with an engine in the front
and a caboose in the rear. The method presented here extends the basic Holzer
theory further to accommodate lumped parameter structural models. A program
is developed for a programmable calculator for determining the natural frequencies
and mode shapes of multi-degree of freedom systems.

1. Holzer Tabulation Method

The Holzer tabulation method was developed for determining the nat-
ural frequencies of torsional multi-degree of freedom systems. Often,
mechanical systems are equated to a shaft containing several disks, as
shown in Fig. 1. The elasticity of the sytem is represented by an equiv-
alent shaft that has the ability to store potential energy. The disks rep-
resent the equivalent mass moment of inertias of the system. If disk 1
in Fig. 1 is displaced through some angle # while disk 4 is held stationary,
energy is stored in the system. When the disks are released, the system
will be set into torsional vibration at its set of natural frequencies. If there
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Fig. 1—Holzer Model of Torsional System.

is no damping, the system will continue to oscillate indefinitely without
a forcing function.*

The Holzer tabulation method, shown in Table 1, is convenient for
determining the natural frequencies (w,) and mode shapes. The natural
frequencies are determined by assuming 8, = 1 radian and trying various
values of w in the table. When the summation of torque is found to be
zero for the system (Column 6, row N), a natural frequency is found. If
the summation of torque is not zero, it is called residual torque. The
residual torque can be plotted against various angular frequencies (w)
as shown in Fig. 2.

The Holzer table is used as follows:

1. Estimate or assume a value for w
2. Calculate w? from 1, above

3. Fillin Column 2 (/)

4. Fill in Column 7 (k;)

5. Foritem 1 (first row)

Table 1—Holzer Tabulation Method (Assume Sample Values of w and 3, = 1 Radian)

1 2 3 4 5 6 7 8

i 1
tem Wt B R 7 B R S e

1 T |

1 h 1 kfi

2 la ke

3 ‘3 kl;

N In

Column 1 = Disk number

Column 2 = Mass moment of intertia, Ib-in-sec?

Column 3 = w? multiplied by Column 2

Column 4 = g, relative angular displacement between disk i and disk 1, radians
Column 5 = Torque resulting from disk /i, Ib-in

Column 6 = Summation of torque, Ib-in

Column 7 = Torsional spring constant k,, in-lb/rad

Column 8 = The relative angle of twist between disks, radians

* For a derivation of the Holzer Method see C. R. Freberg and E. N. Kemler, Elements of Mechanical
Vibrations, John Wiley & Sons, 1966, pp 72-8.
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Fig. 2—Residual torque versus w.

(a) Column 3,1; X w?
(b) Column 4, assume 8, = 1 radian
(¢) Column 5, torque (T') same as Column 3
(d) Column 6, (T') same as Column 5
(e) Column 8, (8) Column 6, divided by Column 7,
6. For item 2 (second row)
(a) Column 3, /5 X w?
(b) Column 4, (82 = 8, — £T/k,) Column 4, — Column 8,
(c) Column 5, (torque) Column 33 X Column 4,
(d) Column6, (£T) Column 6; + Column 5.
(e) Column 8, 8 Column 6, divided by Column 7,
7. Foritem N
(a) Column 3, [y X w?
(b) Column 4, Column 45_; — Column 8,
(c) Column 5, Column 35 X Column 4y
(d) Column 6, (Residual Torque) Column 6y —; + Column 5]

The system frequencies are found at the zero crossings of the residual
torque plot. The residual torque curve can be very steep at the zero
crossing points and care must be taken to accurately determine these
points.

The Holzer tabulation method can be used for translational systems
by substituting mass (Wt/g) for the mass moment of inertia I, transla-
tional spring constant K in lb/in for the torsional springs constants k;,
and the relative displacement of each mass from the first mass x in inches
for B8;(x, is assumed to be 1 inch), as shown in Table 2.

A Holzer Structural model requires the last spring to be fixed to a
foundation such as the earth, as shown in Fig. 3. To set this model into
oscillation, an infinite force would be required. However, since this is
only a mathematical model, we will set the entire system into oscillation
and then remove the forcing function, so that the entire system vibrates
at its set of natural frequencies and the summation of force equals zero.
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Table 2—Translational System (W = weight, g = 386 in/sec?, wis in Hz, and x, assumed to be 1

inch)
1 2 3 4 5 6 7 8
ltem Wig Ww?/g x Ww2x/g IWwwixg K 1K SWwixg

i M, 1 K

2 M K

3 M, K

4 M4 K4

N M

We will find that if we have not selected the proper value for  the re-
sidual force will be infinite because the force generated by the last mass
as shown in Column 5y is equal to the infinite mass multiplied by w2xp.
Since we are looking for a zero crossing in the residual force versus an-
gular frequency curve, we need only determine the sign of the relative
displacement x. When xy is positive, the residual force will be infinite
(positive), and when x is negative the residual force will be infinite
(negative). Therefore, a change in the sign of x is the result of a zero
crossing and is found at a natural frequency of the system. Since Column
8 is the displacement between adjacent masses, mode shapes can be
developed by determining the displacements between masses at the
vibration modes.

Fig. 3—Holzer structural model.
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2. Use of Programmable Calculator

It is obvious that a large number of simple calculations are necessary to
determine the natural frequencies and mode shapes of a multi-degree-
of-freedom structural model. Since the calculations are repetitive, it is
a simple job to program this problem for a computer or programmable
calculator.

A program for a TI-58/59 programmable calculator has been devel-
oped. The program assumes w to be 10 radians and runs through the
Holzer tabulation calculations looking for a change in the sign of xn. If
x~ changes sign (plus to minus) between 0 and 10 radians, the program
subtracts 5 radians from w for averaging, divides by 2x, rounds the value
to the nearest whole number and displays the answer as 1 Hz. If x5 does
not change sign in 10 radians, the program will add 10 radians to w and
will repreat the above process. The angular frequency w will be incre-
mented by 10 radians until xy changes sign. The calculator will then
compute the frequency and display the results in Hz. The displacement
between masses resides in the calculator memory and can be extracted
for developing mode shapes.

The TI-58 contains enough memory to calculate the natural
frequencies and mode shapes of a system containing up to seven masses
and seven springs. The following description of the structural Holzer
program is presented here to enable the reader to use it without mas-
tering the art of programming calculators or computers. Before the de-
tails of the program are delineated, you will have to know a few things
about the programmable calculator. The keyboard is shown in Fig. 4.

Besides the normal calculator functions, the following programming
functions are required for this program:

LRN—(Learn)—Depressing this key allows the calculator to be pro-
grammed. Activating the key a second time will take the calcu-
lator out of the learn mode.

LLBL. A—(Label A)—Defines the start of this program.

STO—(Store)—Stores data in specific memory locations. For example,
10 STO 03 will store the number 10 in memory location 03.

RCL—(Recall)—Recalls the data from memory. For example, RCL 03
would bring the number 10 stored in location 03 to the display
register.

SUM—(Sum)—Adds to a memory location. For example, 5 SUM 03
would add 5 to the contents of the memory at location 03.

Nop—(No Operation)—Provides spacing between program parts for
later additions. Program execution simply performs no operation
when this instruction is encountered. For example, the Nop
function can be used to change the sign of a function by inserting
a minus sign in place of the Nop. The address of the program step
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Fig. 4—Keyboard diagram for TI-58. There are two functions for most keys. The basic
functions are shown as white keys with black lettering. The second functions,
black rectangles with white lettering, are obtained by depressing the (2nd) key
and then the key beneath the desired function.

must be remembered so that you can instruct the calculator to
go to step XYZ (the address of Nop) and then press the (+/-)
key.

GTO—(Go To)—This function is used to instruct the calculator to go
to a specific address. It does this by moving its program pointer
to the desired address. The program pointer is an internal device
used by the calculator to determine which instruction it should
perform next when executing a program. In the learn mode, the
pointer automatically points to the next unfilled location in the
program memory. When in the learn mode, depressing the (GTO)
key and (A) key will tell the program pointer to go to the start of
the program. If the calculator is not in the learn mode, the fol-
lowing key strokes, GTO, 1, 2, 5, LRN, will bring step 125 to the
display register and place the calculator in the learn mode. The
program can then be edited, e.g. the function of step 125 can be
changed by depressing a different key.

FIX—Fixes the decimal point. For example, the following key strokes;
2nd, =, 2nd, FIX, 0 would result in the following display in this
sequence; 0, 3.141592654, 3. Depressing INV, 2nd, FIX will re-
store 3.141592654 to the display.
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INV—(Invert)—Inverts the function. For example, it was used to remove
the fixed decimal in the above example.

x 2 t—(Test Instruction)—This is used as a conditional transfer. The
test register (t) is set to zero in this program. This instruction is
used to determine the change of sign of the last spring xn. If x
> 0 a transfer is made to the address specified. In this program,
it goes to a program step which adds 10 radians to w because the
sign of xn did not change. If xn is less than the test register (0),
it is negative and the next step in the program is followed, which
is to recall the value of w and display it in Hz.

R/S—(Run/Stop)—This function will start or stop the program. This
instruction will halt the program and display the resuits of the
last instruction.

RST—(Reset)—Resets the program pointer to step 0.

When the calculator is being programmed from the keyboard, the
program step numbers are displayed each time a key is depressed. The
number displayed is the program step of the next instruction to be en-
tered.

3. Three-Mass, Three-Spring Structural Holzer Program

The details of a three-mass three-spring structural Holzer program for
a TI-58/59 are described below. The following memory locations are
preassigned to the variable w, the masses, and springs of Fig. 3:

Memory Location Contents
01 wy, radians/sec
02 M, first weight, lbs
03 M,, second weight, lbs
04 M3, third weight, lbs
05 K, first spring constant, lb/in
06 K, second spring constant, Ib/in
07 K, third spring constant, Ib/in B
The program for the calculator is as follows.
Key Strokes Function
LRN Enter learn mode
2nd Lbl A Defines start of program
RCL 1 Recalls w
Calculate w?
STO 8 Stores w? in memory location 08

(RCL 8 X RCL 2 + 386) STO 9 Calculate Force (F) on first spring
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(1 -(RCL9 + RCL5))STO 10

(RCL 8 x RCL3 X RCL 10 +
386) SUM 9

(RCL 10 — (RCL 9 + RCL 6))

STO 11

(RCL8 X RCL 4 XxXRCL11+

386) SUM 9

(RCL 11 - (RCL 9+ RCL 7))

2nd Nop 2nd x = t 175 (see
note at end of program)

((RCL 1 - 5) + (2 X 2nd=))

2nd FIXO R/S

LRN
GTO 175 (see note at end of
program)

NATURAL FREQUENCIES

(w2x W ,/g) where x, is assumed to
be 1 inch and stores in memory
location 09

Calculate x2 by determining the
displacement between M, and M5,
which is the force on M, divided by
K; (RCL9 + RCL 5) and
subtracting it from x, (one inch).
Stores at memory location 10.
Calculate ¥ F by computing the
force on the second spring (w2Wyxo/
g) caused by M5 and summing it to
the force on the first spring.
Calculate x3 by computing the
displacement between M5 and M,
which is the total force on the
second spring divided by K,
subtracted from x3. Stored at
memory location 11.

Calculate X F by computing the
force on the third spring (w?2Wsx3/g)
caused by M3 and summing to
memory location 9

Calculate x5 by computing the
displacement between M3 and M«
which is the total force on spring 3
divided by K;, subtracted from x3. A
change in sign of this displacement
indicates a zero crossing.
Conditional transfer if x3 = 0, go to
175 (move the program pointer to
step 175). If x5 < 0 proceed to the
next step.

Calculate frequency in Hz. Recall w
from memory location 01, subtract 5
radians (for averaging within the 10
radian steps) and divide by 2x.
Fixes decimal place to nearest whole
number, stops program and displays
frequency in Hz.

Exit learn mode

Moves program pointer to Location
175 (an arbitrary urused memory
address)
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LRN Enter learn mode at program step

175
10SUM 1 Adds 10 radians to w
GTO A Moves program pointer to the start

or program (step 0) to recalculate xn
with a new w (old « + 10 radians)
LRN Exit learn mode, End of Program

Note: The conditional transfer (2nd Nop x = t 175) contains a Nop in-
struction and a transfer address of 175. The transfer address was arbi-
trarily selected as program step number 175 since the program for the
three-mass three-spring system is only 112 steps long not including the
6 additional program steps (1, 0, SUM, 1, GTO, A) beginning at the
transfer address 175. When programming the calculator for a six or seven
spring/mass system, step 175 would already have been used before get-
ting to the conditional transfer instruction. The transfer address must
be greater than the program step number of the Nop instruction. The
transfer address can be any step number greater than 212 and less than
234 for the T1-58 for any system containing up to 7 springs and 7 masses.
The Nop instruction is inserted in the program prior to the test in-
struction x = t. This test instruction was used to determine the change
in sign (positive to negative) of the relative displacement of the last
spring, x n, which determined the frequency of the first mode of vibra-
tion. The second mode will be found when xn changes sign again.

In determining the frequency of the second mode the blank instruction
(Nop) is replaced with (INV) so that the conditional transfer instruction
is INV x = t 175. The program will now look for xn to change from
negative to positive in determining the frequency of the second mode.
The next mode is found by replacing INV with Nop.

The operation of the calculator is as follows. First place the following
values in memory:

10 STO 01 start with 10 rads.
M, STO 02 Weight No. 1
M, STO 03 Weight No. 2
Mj; STO 04 Weight No. 3
k; STO 05 Spring No. 1
ko STO 06 Spring No. 2
ka STO 07 Spring No. 3
Depress A
Calculator will compute the 1st mode in Hz
GTO 2nd MODE
91 (LOCATION of Nop)
LRN
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INV

LRN

RST

A (SECOND MODE COMPUTED)
GTO 3rd MODE

91

LRN

2nd

Nop

LRN

RST

A (THIRD MODE COMPUTED)

The mode shapes can be developed by determining the displacements
between the masses. The displacement between masses is found in
Column 8 of the Holzer table K—! ZWw?2x/g. Note that ZWw2x/g is al-
ways stored in memory location 9 for each mass and the displacements
can be found by dividing it by the springs constant K;. Looking at the
program we find that RCL 10 = (1 — (RCL 9 + RCL 5)) for mass 1 where
memory location 9 contained £} W2x at the time of the calculation and
memory location 5 contains K. Since the displacement between M, and
M(8,-2) is equal to K~! £]Ww2x, we obtain RCL 10 = (1 — §,_5) and
51_2 =1 - RCL 10.

The displacements might be very small; therefore, the calculator must
be taken out of its fixed decimal place mode. After the calculator displays
the frequency of the first mode of vibration, the following keys are de-
pressed:

INV, 2nd, FIX

1-RCL10=
The relative displacement between mass 1 and mass 2 will be displayed
on the calculator.

The displacement between masses 2 and 3 can be determined in a
similar manner.

RCL 11 = (RCL 10 - (RCL 9 + RCL 6))
bo_3 = RCL 9 + RCL 6

2
where RCL 9 = > Wwx/g
1

RCL6 = K,
é2-3 = RCL. 10 — RCL 11

The displacement between masses 3 and « is determined by:
d3-» = RCL 9 + RCL 7
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where RCL 9 = ¥ Waw2x/g
1

RCL7 =K,

The displacements between masses at the higher modes are obtained
by following the procedure outlined above remembering always to re-
move the calculator from the fixed decimal mode.

The displacements between masses in each mode are normalized so
that the maximum displacement between adjacent masses (6;—2, 623,
03-=) 1s a unit deflection. This is accomplished by dividing all dis-
placements by the largest displacement. The displacements may be
plotted to delineate the mode shape.

4. Example

Fig. 5 shows a steel rack with three shelves supporting rigid masses. The
rack structure is welded so that the shelves and top are fixed to the four
columns. The base of the assembly is firmly fixed to a vibration table.
The problem is to find the natural frequencies and mode shapes that
would be found if the table were to oscillate in the x direction as shown
on the figure.

The Holzer lumped parameter structural model was shown earlier in
Fig. 3. The spring constants K represent the compliance of the structure
between the masses. Values of the masses are shown in Fig. 5. The rack
weight apportioned to each mass is 0.24 the column weight plus the shelf
weight, or approximately 10 1bs/mass. Therefore, M; = 110, M, = 160,
and M; = 210 lbs.

ﬁ;lr——r— EMPTY RACK Wt = 501b
M= e ; ;
— L [ 20 24inW x 24inD x 60inH
[ ¥ COLUMNS, 2in x 2in x '/,in
No—="] ‘P/ T— = 0.2in%
P ’ 20 lyy = 0.2in
( E)
l E a I~ RACK MATERIAL — STEEL
M3 —T & !r / ‘ ¢ =
— L S ‘ 10 M, =100 1Ibs

M. = 150 Ibs
M, = 200ibs

Fig. 5—Rack assembly used for example.
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Fig. 6—Deflection curve.

The spring constants K are derived from a static analysis of the
structure. If the rack was deflected in the x direction, the columns be-
tween the shelves would bend in an “s” shape with the ends perpendic-
ular to the shelves. The deflection curve of the columns looks like two
cantilever beams in series, as shown in Fig. 6, where h is the distance
between shelves (h = 2!{). The spring constant of a cantilever beam with
length [ is

3EI
K=
_ 3EI
(h/2)3
There are 8 beams per shelf, and springs in series add like capacitors in
series:

per beam,

1
Keotumn = ! = = 12 EI/h3
1 1 1 1

+ +
Kbeam, Kbeam, 24EI/h3  24EI/h3
K 4. = 48 EI/h3 (per shelf)

48E1
K = b3
48(30 X 108)(0.2) .
K ,=Ky= = 36,000 1b
1 2 (20)3 /m
48(30 X 108)(0.2)
K3 =

(10)3
K3 = 288,000 1b/in = 288,000 1b/in.
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MODE 1, 31 Hz
Key Stroke Display
§ = (1-RCL1O) = 0.317
1-2
62 s = (RCLYO-RCL11) = 0.631
[} = (RCLY + RCL7) = 0.083
ram
MODE 2, 79 Hz
Key Stroke Display
§ = (1-RCLYO) = 1.979
1-2
8 . {RCL10-RCL1Y) = 0.839
2+3
& - (RCLY ¢+ RCL7) = -.171

MOOE 3, 125 Hz

Xey Stroke Display
§ % (-RCLI) = 4.9
6., % (RcLIO-RCLIY) = -23.37
6, = (RCL9 ¢ RCLT) = 19.99

Fig. 7—Deflection curve plotted (a) for mode 1, 31 Hz, (b) tor mode 2, 79 Hz, and (c) for mode

3, 125 Hz.

616

/
Normalized /_ Pargren | SIS .\,
k |
0.502 ,' l
/ /
1.000 : !
- l
0.131 e e = ] _]
! /
/ /
/ /
/ /
/
l !
777777777777
Normalized .4 I
1.00 / /
/ {
-.427 / /
-.086 / [
| i
\ \
\ \
! \
|
TELFIT AL TL IR S
/
| / /
Normalized
7 /
0.211 /
/ r
-1.00 /‘ /
\
\ \
0.855 % \
\ \
\ ;
! /
/
/ /
FPeT P8I L T T TITTITIT

RCA Review « Vol. 39 « December 1978




NATURAL FREQUENCIES

Once the calculator is programmed, the data is loaded as follows:

Key Strokes
W 10 STO 01
M1 110 STO 02
M2 160 STO 03
M3 210 STO 04
K1 36,000 STO 05
K2 36,000 STO 06
K3 288,000 STO 07

The natural frequencies are now computed with the following se-
quence:
Key Stroke Display

A 31Hz

1st mode
GTO
91
LRN
INV
LRN
RST
A 79 Hz 2nd mode
GTO
91
LRN
2nd
Nop
LRN
RST
A 125 Hz 3rd mode
Before the mode shapes are determined, the calculator must be taken
out of the whole integer mode with the following key strokes: INV, 2nd,
and FIX. The mode shapes are determined by computing the deflections
between masses, normalizing to unit deflection, and plotting, as shown
in Fig. 7(a-c).

RCA Review ¢ Vol. 39 » December 1978 617



