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1. INTRODUCTION

The purpose of this effort is to provide quantitative information to
aid in evaluating the effects of x-ray spectral variations on the SGEMP
response of satellite systems. The problem is approached by defining a
number of excitation parameters such as electron yield and velocity, dose,
dipole moment, etc., which are the driving functions for the various SGEMP
effects. The driving functions are evaluated at various locations in a
representative satellite structure ranging from the external surface through
various structural elements to heavily shielded equipment boxes.

The excitation parameters chosen are basically linear and can, there-
fore, be computed as a function of incident x-ray energy. Coefficients are
computed which relate the various excitation parameters to incident x rays
such that the excitation parameters can be obtained for an arbitrary spec-
trum. The effects of various x-ray spectra can be evaluated by comparing
the excitation parameters produced by candidate sources with those produced
by blackbodies or weapon spectra of interest. All excitation parameters are
computed for blackbody spectra ranging from 1 to 15 keV.

While most of the excitation parameters chosen are linear with x-ray
fluence, it should be noted that many of the x-ray responses are nonlinear.
It is of some interest to evaluate certain "response' parameters to deter-
mine the range in which responses become nonlinear. However, the nonlinear
response parameters are not the most suitable for evaluating x-ray spectra
because the effects tend to become less sensitive to spectral variations in
the nonlinear regime (Ref. 1). Because the responses are more sensitive to
spectral variations in the linear regime, and because linear responses occur
at numerous locations on spacecraft over virtually the entire range of inter-
est, the linear response parameters give a better indication of the maximum
response variations caused by spectral variations.

The nonlinear responses can be somewhat artificially divided into two
categories of problems — the internal response of internal cavities and the
external response of convex objects where a certain fraction of the electrons
can escape from the object. Spectral effects on the nonlinear internal cav-

ity response are evaluated with a quasistatic 1-D solution with emission
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from one face of a diode. The potential, transmitted current, and dipole
moment are used as response parameters. The external response evaluation

in the nonlinear regime is not treated here.

T

Because of the potentially tedious calculations required to evaluate
an arbitrary spectrum and compare excitation parameters with those of
blackbody spectra or weapons, a set of magnetic cards for the TI-59 cal-
culator has been prepared. These cards are available and can readily be

E used to compute each of the parameters considered in this effort.
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2. SPECTRUM EVALUATION PARAMETERS

There exists a myriad of parameters that could be chosen to evaluate
SGEMP response sensitivities to x-ray spectrum variations. One approach
consists of identifying all important known effects and defining responses
(e.g., fields, currents, potentials, etc.) for representative configurations
or geometries of possible interest. Such an approach tends to depend upon
the configuration or model chosen and might also result in an excessive list
of evaluation parameters.

A second approach is to define the quantities responsible for producing
each of the known effects. Presumably, if each of the driving functions or

excitation parameters is specified, the responses resulting from these exci-

tation sources will also be uniquely specified. Implicit in this treatment
is the assumption that an x-ray spectrum which produces excitation terms com-
parable to a second spectrum will also produce similar SGEMP responses. This
approach precludes the need for defining complex geometries and performing
complicated time-dependent calculations, and was chosen for this effort.

A distinction between excitation and response terms may be helpful at
this point. Parameters which are linear with fluence and independent of x-ray
pulse time history are termed "excitation' parameters. Parameters that become
nonlinear as space-charge-limiting becomes appreciable, and are dependent on
pulse time history, are called '"response" parameters. Furthermore, source

terms are dependent only upon attenuation and emission materials, whereas

response terms are also dependent on geometry.

Primary emphasis in this effort is on defining a pertinent set of exci-
tation parameters and evaluating them at suitable points on a representative
spacecraft. A limited set of response parameters is considered to obtain a
first-order characterization of spectral response to space-charge-limiting.
Solutions are kept as general as possible, and lend themselves to analytic
treatment.

Variations in x-ray time history are not specifically considered in
this exercise. Effects due to different pulse widths of spectra can be

readily estimated in the linear regime. Evaluations of simultaneous spectral
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and temporal variations in the nonlinear regime are very complex and beyond
the scope of this simple treatment.

The parameters chosen for evaluating spectra are summarized in Table 1.
The 1list is not exhausive but is representative of the terms thought to be
important in producing x-ray responses. The parameters can be conceptually
divided into four categories: the electron yield which is the basic x-ray
interaction with the materials; the dipole moment in a dielectric which is
descriptive of the charge deposition profile; the energy deposition in diel-
ectrics and semiconductors; and finally, several quantities such as average
velocity and energy and dipole moment which are descriptive of the location

and motion of charge in a vacuum.

Table 1. Parameters Employed in Comparing SGEMP Effects
of Different Photon Spectra

Electron Yield
Primary yield
Forward-to-reverse ratio
High-to-low-Z ratio
Dielectric Charge Profile
Dipole moment
Dose
Bulk dose
Interface dose
Dose ratio (Au/Si)
Vacuum Charge Profile
Mean electron velocity
Average electron energy
Diode potential
Diode current

Dipole moment

In terms of our definitions of excitation and response terms, we may
categorize electron yield, dose, mean velocity and energy, and dielectric

dipole moment as excitation terms. These quantities are not dependent on

10
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flux rates, and are linear with fluence over the ranges of interest here.
Diode potential, current, and dipole moment are classified as response
terms. These require a specification of photon source flux and some min-
imal system geometry, and also may become nonlinear with fluence.

Four basic categories of x-ray response are being described by the
parameters of Table 1. They are the external SGEMP response, internal cav-
ity SGEMP response, shielded cable excitation, and TREE effects caused by
energy deposition in electronics, as indicated in Table 2. The electron
yield is important in every category in that it provides the basic coupling
of photons into the system. Primary electron yield, as defined here, is
the total number of electrons produced by an irradiated surface in the

energy range above 100 eV (generally speaking). This yield is distinguished

from secondary-electron yield (electrons of energy 100 eV and below) because
analytic multiple-scattering cross sections are considered to be inaccurate
below 1 keV (Ref. 2). Recent analytical work in the regime below 1 keV (Ref.
3) has not been incorporated here.

The external response in the linear regime is determined by the primary-
electron yield in the reverse direction and by the average electron velocity.
Under certain circumstances, forward-directed emission may be important also.
Generally speaking, electron emission will occur from low-Z materials on the
outside. Stored charge release of abundant low-energy electrons may also be
an important SGEMP driver in the low-fluence regime. This secondary-electron
yield has been shown to be proportional to interface dose (Ref. 4). The
spectrum energy becomes important in the nonlinear regime, but the response
in this regime is less sensitive to spectrum than in the linear regime and

has not been treated.

s

The internal cavity response is highly dependent on electron yield

ratios as well as on electron velocity. Cavities may be large (v2 m) with

emission from either low-Z or high-Z materials. The net forward-to-backward

—

PN 1 AR B R Bl PRl o+ sl ...

emission ratio may be important in determining net current in cavities. The
larger cavities may produce considerable space-charge-limiting at the higher
fluence levels, and the average energy, diode potential and current, and
. i dipole moment may be used to characterize the response (Ref. 5). Small cav-
ities such as equipment boxes may contain higher-Z materials in sizeable
proportions. High-to-low-Z electron emission ratios may be important in

these cases.

w?;f 11




Table 2. Summary of Parameters Describing
Each SGEMP Regime Treated Here

External Response
Linear regime
Electron jield
Average velocity
Interface dose
Internal Cavity Response
Large cavities, linear regime

Electron yield from low-Z materials

Forward-to-reverse ratio
3 Average velocity
Interface dose
Large cavities, nonlinear regime
Diode potential, current
Dipole moment
Average energy
Small cavities
High-to-low-Z emission ratio
Cable Excitation

Electron yield

? 14 Dipole moment
Dose

} Energy Deposition in Electronics
: &; Bulk dose
é i:& Interface dose
; 1 Dose ratio (Au/Si)

§
4
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The excitation of shielded cables by direct x-ray penetration is gen-
erally proportional to electron yield from cable shields for cables with
] large gaps, and proportional to the electron dipole moment resulting from
] penetration of electrons emitted from shielding material into the dielec-
trics for cables without gaps (Refs. 6,7,8). At the higher fluence levels,
3 dielectric relaxation times may become comparable to response times of
. interest. These have been shown to depend upon dose and dose rate (Ref. 9).
i Transient radiation effects in electronics (TREE) are dependent upon
energy deposition due to photo-Compton electrons. The process is important

both in the bulk (greater than an electron range from the surface) and at

A

material interfaces. In the latter case, dissimilar materials can greatly

affect energy deposition within an electron range of the interfacec (Ref.

iy

10). This effect is represented well to first order by the ratio of the
bulk dose in each material.

SGEMP parameters considered in this exercise but not directly employed

T A T AT P e

in the spectral sensitivity studies are listed in Table 3. Certain of these
quantities are not strong functions of photon or electron energy over the
range of 1 to 1000 keV. For example, electron backscatter yield is a weak
function of energy spectrum in this range (Ref. 11). Other quantities of
interest may be well represented by a different parameter type as far as

spectral sensitivity is concerned. Interface dose enhancement due to dis-

% similar materials falls into this category. The energy sensitivity of the
. interface-to-bulk dose ratio in a medium behaves similarly to the bulk dose
‘ f ratio of the two mediums. Therefore, only the latter ratio has been included
‘ ;; in the list. Secondary-electron yield has been shown to be proportional to
§§ surface dose [energy deposition with an electron range of the surface (Ref.
3 g 4)], and so has not been computed separately.
BE:

Table 3. Potentially Interesting Spectrum Evaluation Parameters
3 Not Treated Here Due Either to Weak Energy Dependence or
: to Similar Sensitivity to Thcse Quantities Listed in Table 1

Secondary-electron emission efficiency
Electron backscatter yield
Interface dose enhancement due to dissimilar materials

Electron angular distribution

13
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3. SATELLITE LOCATIONS

Representative satellite materials and thicknesses have been chosen
with assistance from TRW (Ref. 12}, as shown in Table 4. The intervening
materials are listed as well as the energy at which the photon attenuation
is 1/e. Also indicated is the blackbody temperature for which the attenua-
tion is 1/e. The locations have been chosen to range from the very thinnest
(thermal blanket) to the very thickest (heavily shielded box), with a good
sample of intervening thicknesses.

The materials on the external surface of the satellite tend to bte low-Z
such as quartz coverglass, fiberglass, and aluminum. Large internal cavity
walls are also characterized by low-Z materials, although a significant
amount of lead-tin solder is found on solar cells. The Faraday cage, thermal
blanket, and solar cell models represent these types of wall materials. The
thin mylar or thinnest Faraday cage (3 mils aluminum) is apt to produce the
largest internal cavity response due to maximum electron emission. The
thicker Faraday cage model and solar cell give a measure of the hardness of
a spectrum required to penetrate thick wall materials.

A minimum-thickness equipment box wall (20 mils aluminum) is also mod-
eled to produce the worst-case response driver in regions where vulnerable
electronics are found. Various emission and dose ratios are obtained for
this minimal attenuation. Addition of 10 mils Kovar represents a typical
attenuation through the semiconductor case into the interior, and maximum
spectrum attenuation is represented by the heavily shielded box model.

Minimum photon attenuations into cable interiors are represented by a
shield model consisting ¢f 3 mils copper; 20 mils copper is used to repre-
sent penetration by phoiciis to a cable deep in the interior of a cable
bundle.
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Table 4. Satellite Locations

Blackbody
Energy Temperature
E‘\ [e-fold [e-fold
= Satellite Intervening attenuation] attenuation]
3 Location Material (keV) (keV)
=
§ : Surface - -, -
3 g Thermal 10 mils mylar 5 1-2
i blanket
= } Faraday 3 mils aluminum 8 2
E cage {minimum)
3 20 mils aluminum 15 4
E (maximum)
é Solar cell 5 mils quartz 22 7
;- 10 mils silicon
4 1 mil lead-tin solder
- S mils fiberglass
F 2 mils aluminum
B 5 mils fiberglass
&
Cable 3 mils copper 28 8
3 shield (min. shield thickness)
% ; 20 mils copper 53 15
;- (behind bundle)
? \3 Box wall 20 mils aluminum 15 4
Q 0 {minimum)
A@; Bex § semi- 20 mils aluminum 40 11
1 o4 conductor 10 mils Kovar
device housing
T Heavily 20 mils aluminum 135 35
S shielded hox 10 mils Kovar
. 12 mils tantalum
3]
k|
%
:‘::
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4. EXCITATION PARAMETER CALCULATIONS

Satellite excitation parameters have been evaluated for selected sat-
ellite positions and materials. Unit fluence is assumed to be incident for
all configurations. Results are valid at all fluence levels, including the
nonlinear response regime. A modified version of the QUICKE2 electron emis-
sion code was used in the computations (Ref. 13).

The results presented here are questionable in the very low energy
limit (below several keV) because of inaccuracies in the QUICKE2 cross
sections. T . low-order Legendre polynomial repcesentation of angular dis-
tributions u 1 in the formulation results in anomalies at high energies
for low-atomi. umber materials for quantities dependent on backward-
emitted electrons. For example, the QUICKE2 code gives negative values
for interface dose at the surface of mylar for photon energies of 600 keV
and up. An upgraded QUICKE code version would solve the angular distribu-
tion problem and extend cross section accuracy down to 1 keV (Ref. 2). The
analytical developments of Strickland (Ref. 3) for electron energies below
1 keV could also be employed to improve accuracy in the low-energy range.

The dipole moment computation employed here for cable effects is the
sum over energy of the product of the charge in each energy bin and its
mean penetration distance into a dielectric material. The material used
here is carbon, although electron ranges are relatively insensitive to
material for low atomic ~umbers (Ref. 14). Electrons are assumed to be
emitted normal to the surface for this computation. A better assumption
would be to use a distribution proportional to cos @ measured from the sur-
face normal (Ref. 15). This simpiification introduces factor-of-two inac-
curacies in the absolute magnitude of the dipole moment; these inaccuracies
are quite uniform with photon energy and should not impair spectrum sensi-
tivity comparisons.

Algorithms for calculating the excitation parameters are given in
Table 5. Values for arbitrary spectra can be obtained by the expressions
once the terms for monoenergetic spectra are known. These are tabulated

for reprezentative configurations below; %, represents the energy fluence
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Table 5. SGEMP Excitation Term Algorithms for Arbitrary Spectra
of Energy Fluence ¢j versus Photon Energy i.
(Lower-case symbols represent the parameter value
computed for monoenergetic spectra of unit fluence.)

Dose D= ) o, d,
i
Electron Yield Y = E«bi Y;
i
A Veloci z; Qi i
verage Velocity V> =
> Y Y/ vy
i
21 & Vi e
Average Energy <f> =
2: ¢. y.
i‘i
Dipole Moment P = }: o Py

of the spectrum in bin i. The nonlinear cavity response algorithm is not

so simple, and is presently in computer code form (see Section 5).

4.1 MONOENERGETIC SPECTRA

Excitation parameters are presented for monoenergetic photon spectra
in Appendix A. Results are given in both graphi: and tabular form. The
tables may be used with the algorithms of Table 5 to obtain excitation
parameter values for arbitrary spectra. A linear combination of contri-
butions over all energies in the spectrum using the monoenergetic spectrum
parameters as weighting factors gives the value corresponding to the arbi-

rary spectrum. An example employing the tables is treated in Section 6,
and automated calculations employing them are described in Appendix D.

17




4.2 BLACKBODY SPECTRA

Excitation parameters are given here for blackbody spectra. The spec-
tra and parameters are displayed as functions of blackbody temperature in
Appendix B. Resulits for arbitrary combinations of blackbodies may be
obtained by direct superposition of the parameter values in the same pro-

portion as the fluences of the incident spectra.
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5. RESPONSE PARAMETER CALCULATIONS

Satellite excitation parameters have been described above and tabulated
in the appendices. The results are valid at all fluence levels, and are
dependent only upon attenuation and emission materials for a given spectrum.
The parameters chosen to meter satellite response to the excitations are
described here. These differ from the excitation parameters in that they
require additional geometry specification, and they depend upon photon flux
rather than on total fluence. They also may become nonlinear at higher
fluence levels due to space-charge-limiting. Thus, the response parameters
are less general than excitation parameters, and they are not derivable from
simple linear combinations of monoenergetic results in the space-charge-
limited regime.

A first-order measure of satellite response variations due to varying
photon spectrum may be achieved with a self-consistent solution of electron
emission between grounded parallel plates. This solution resembles inter-
ior cavity response while remaining general and relatively simple to compute.
In addition, results scale with the parameter Fdz, where F is the photon flux
and d is the diode spacing. Results are generalized in that they apply to a
continuous range of spacings rather than to one specific case (see Ref. 1).

Response parameters employed here are the electric field at the front
plate, the peak cavity potential, the transmitted current, and the electron
charge dipole moment. The dipole moment presented here ic the integral over
the entire charge cloud of the product of the charge density times its dis-
tance from the emission face. Electron energy spectra are obtained from the
QUICKE2 code. Angular variation of the electron number intensity is propor-
tional to cos 6 where 8 is measured from the surface normal. Charge is
emitted from the forward plate. The treatment is equivalent to that in
Reference 16, extended to arbitrary emission energy spectra between paral-
el plates.

Results for blackbody and blackbody combination spectra inciden. on

aluminum plates are shown in Appendix C. The combination spectra plotted

19




were chosen from a larger set of combinations in the range 2 to 15 keV;

the ones chosen bracket the responses at virtually all leyels.

Magnetic field estimates can be immediately made from the results

using the simple expression:

_ JR
Hy =7
where
H¢ = magnetic field (amp/m) ,
J = transmitted current density (amp/mz) ,
R = diode radius (m) .
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6. EXAMPLE USES OF THE PARAMETERS

Representative satellite excitation parameters for SGEMP have been
determined and evaluated in previous sections of this report. Example uses
of the parameters are discussed here. Excitation and response parameters
for several bremsstrahlung photon spectra are computed and compared with

values for a nominal spectrum. First, a sample illustration of the numer-
ics is given.

6.1 SAMPLE COMPUTATION

A sample computation illustrating the use of the monoenergetic excita-
tion parameters is shown in Figure 1. The electron yield from fiberglass
behind a solar array is obtained for the spectrum shown by dividing it into
energy bins of width 20 keV (the large bin width is used for illustrative
purposes only, to reduce the numerical computation effort). The fluence in
each energy bin and the electron yield corresponding to that energy are
obtained (indicated by dots on the curves). The product of the two gives
the electron yield due to photons in that energy bin. The sum over all
bins gives the electron yield for the entire spectrum. These steps are

illustrated mathematically by the relation:

N
Y = }E: @Ei be; ¥;
i=1

20 keV x (2.7x107% x 2.0x10°% + 1.6x1072 x 1.2x10"8 + 4.5x1073
9

1

x 6.8x107° + 8.7x10"% x 4.5x10"%)

1

1.5 x 10°8 ¢/cal (QUICKE ... 1.4 x 1078 c/cal) .

In this particular case, the results obtained with the large-energy bins
correspond very well to results obtained with QUICKE2 using much finer bins.
This approach applies to every parameter type using the corresponding algo-

rithms of Table 5. Notice that we have assumed unit fluence to obtain the

21



-7 T T— 1T 1] T T T 17 T T 1 1]

YIELD DUE TO MONOENERGETIC PHOTONS -

—
[@s)
T

1

4

S 10-8 —

~

8 =

! >

=

— 1 ’9 b— -

=0k 1 cal/cm? .

= B (AN 2 52 T

2 - g | e YIELD -

= T=8 | _

vy ]0-10 - keV | | = —

- b— <L r -
k: w B - - N
g : 3 1
é ]0‘].‘ — e Y : } + +—t : '-
- 8 keV BLACKBODY SPECTRUN]
) - ¢ = 1.00 cal/cm? A
‘i ]0_] —

T T 1]

—] =20 keV-

€

kY ~
y
o~

1

T et -

Ao
. vy
-7
gt

[N

PHOTON FLUENCE, ® (cal/cme/keV)

t‘i 1 1 1
i 1 10 100
1]

1000
‘ . PHOTON ENERGY, € (keV)
| g
Ei | i
i :3:
3 ‘, Figure 1. Sample calculation of electron yield due to an 8-keV
b I blackbody incident on a solar array. Monoenergetic

photon results are employed.

- . "l
? 22
s £ rg




units C/cal for purposes of comparing spectra (see Figure 1). This nor-

malization is employed for all excitation parameter results in this report.
6.2 BREMSSTRAHLUNG SPECTRUM EVALUATIONS

A subset of the parameters defined in previous sections has been eval-
uated for bremsstrahlung photon spectra in the range from 135 to 400 keV.
The spectra are shown in Figure 2. The parameters used ar: indicated in
Figure 3, below the spectrum profiles presented as ratios of the corres-
ponding values for a 10-keV blackbody. The profiles diverge from unity as
the bremsstrahlung energy increases. Examination of the 10-keV blackbody
spectrum (see Appendix B) and the bremsstrahlungs corroborates this behav-
ior. The lower-energy bremsstrahlung spectra are more similar in energy
content to the 10-keV blackbody than the higher-energy bremsstrahlungs.

The cavity response to the incident bremsstrahlungs as a function of
incident flux is shown in Figures 4 and 5. The spectra penetrate 3 mils of
aluminum, emitting electrons to the interior from the first plate. Some
space-charge-limiting is evident from the curve nonlinearities. For a diode
spacing of 0.5 m and a pulse width of 30 nsec, space-charge-limiting begins
at about 5 x 10-4 cal/cmz.
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Figure 2. Bremsstrahlung photon spectra
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F is the photon flux, J is the elec-
tron currcnt density, and d is the plate spacing.
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tration of 3 and 20 mils aluminum by monoenergetic photons
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15 4,012x1077  9.239x107° 150 1.082x10~7  6.704x10" 10
20 6.680x10"7  1.252x1078 200 7.395x10°8  8.086x10"1°
30 6,064x10"7  9.629x1072 300 3.839x10°8  1.226x107°
40  4.358x10°7  5.818x107° 400  2.383x10°8  1.590x107°
50 3.363x10"7  3,932x107° 500  1.748x10°8  1.920x107°
60  2.588x10"7  2.707x107° 600  1.383x10°8  2.162x107°
70 1.997x10°7  1,897x107° 800  1.022x10°8  2.444x107?
80 1.500x10~7  1.403x107° 1000 8.565x10"%  2.582x107°
Figure A-8. Reverse-emitted electron yields from gold and fiberglass

behind solar array due to monoenergetic photons incident

37




FIBERGLASS
FIBERGLASS

1000 I . T T 77 T 1T

T

«»v 100 .
i = : -
EoT H1/L0-7 i
o
S
2 S
. ! )
w10
-
8
o
'.—
~ 4
i : FORWARD/REVERSE
VS

el

|

3 0.1 ) el ! [ ! L1
: 1 10 100 1000
RE-01220 PHOTON ENERGY (keV)
! pHoTon  ELECTRON YIELD RATIOS phoToy  ELECTRON YIELD RATIOS
' ENERGY ~ FORWARD/ HIGH/ ENERGY ~ FORWARD/ HIGH/
(keV)  REVERSE LOW-2Z (keV)  REVERSE LOW-Z
A 2 1.100 5.00 90 3.669 150.6
d 5 1.245 13.37 100 4.160 174.0
y 10 1.369 18.36 125 5.411 183.8
‘; 15 1.499 43.43 150 6.373 161.4
£€1 20 1.612 53.37 200 7.250 91.45
, i 30 1.828 62.98 300 7.691 31.31
| L 40 2.012 74.91 400 7.910 14.99
: i 50 2.230 85.53 500 8.082 9.063
1 ; 60 2.518 95 60 600 8.256 6.398
] 70 2.824 105.3 800 8.660 4.184
i 80 3.202 106.9 1000 9.018 3.318

Figure A-9. Electron emission ratios for monoenergetic photons. The high-
to-low-Z ratio is for reverse emission from gold compared to
fiberglass, and the forward-to-reverse riatio is for aluminum.
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PHOTON PHOTON
FOTo ELECTRON YIELD (C/cal) Tonay ELECTRON YIELD (C/cal)
(keV) 3 mils 20 mils (keV) 3 mils 20 mils
2 - - 90  5.873x10°°  4.705x10°
5  9.564x107'2 - 100 5.070x10°%  4.259x1078
10 1.257x10"1° - 125  3.283x10"%  2.923x10°°
15 1.242x10°°8 - 150 2.395x107%  2.195x10°8
20 9.770x10"%  2.778x107'3 200 1.501x10°8  1.414x1078
30 2.325x1077  6.218x107° 300 1.154x10°8  1.106x1078
0 2.291x1077  3.637x1078 200 1.170x10°8  1.131x1078
50 1.691x1077  6.280x10" 8 500  1.279x10°8  1.234x10°8
60  1.279x1077  6.991x1078 600  1.338x10°%  1.341x10°8
70 1.008x10"7  6.707x10°8 800  1.580x10°8  1.535x1078
80  7.621x10°8  5.704x1078 1000 1.713x10°%  1.668x107°
Figure A-10. Electron yield inside cables of shield thicknesses 3

and 20 mils due to monoenergetic photons incident at
1 cal/cm?
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PHOTON  n1poLE MOMENT (C-m/cal) PHOTON  h1poLE MOMENT (C-m/cal)
ENERGY ENERGY
(kev) 3mils 20 mils (keV) 3 mils 20 mils
2 - - 9  7.32x10"13  5.87x10713
‘ 5 - - 100 8.00x10°13  6.76x10°13
S 10 - - 125 7.56x107°  6.76x107"
3 -15 13 13
. 15 2.57x10 - 150 7.81x107 7.13x10
f 20 3.98x1071% - 200 7.07x107 '3 6.63x10713
| 30 2.68107°  7.07x1071° 300 7.75x107'%  g.00x107"3
i 20  5.35x10°1°  g.a9x10” 14 400 1.15x107'2  1.12x10712
‘§ 50 6.39x16713  2.37x10713 500 1.79x10712  1.72x10712
! p 60  7.19x10°'3  3.94x10713 600  2.72x10°'2  2.63x10" 12
f 70 7.94x10°13  5.29x107 13 800  5.57x107'2  5.54x107'2
, 80  7.63x10°'3  5.72x10713 1000 9.61x107'2  9.30x107 12
) i Figure A-11. Dipole moment inside cable dielectric due to monoenergetic
?ﬁ photons incident at 1 cal/cm?. Copper shield thicknesses
: are indicated beside the curves.
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RE-01440 PHOTON ENERGY (keV)
PHOTON PHOTON
Enonon BULK DOSE pHoTOM BULK DOSE
(keV) [rad(Au)] [rad(Si)] (keV) [rad(Au)] [rad(Si)]
i i 90  8.843x10°  2.176x10%
) i 100 8.105x10°  1.813x10%
10 1.368x10°  2.988x10° 125 5.962x10°  1.412x10%
15 1.818x107  1.366x10° 150 4.218x10°  1.249x10%
20 1.76x10°  1.057x10° 200  2.324x10°  1.186x10%
30 8.313x10°  4.141x10° 300 9.701x107  1.208x10%
4  4.241x10°  1.857x10° a00  5.484x10°  1.230x10°
50  2.408x10%  9.703x10% 500  3.672x10%  1.234x107
60  1.494x10°  5.778x10% 600 2.779x107  1.228x10"
70 9.946x105  3.829x10% goo  1.937x107  1.198x10°
80 7.178x10°  2.780x10% 1000 1.553x10%  1.150x10°
Figure A-12. Bulk dose inside box due to monoenergetic photons inci-

dent at 1 cal/cm?
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PHOTON ENERGY (keV)
PHOTON PHOTON
ENERGY  DOSE RATIO ENERGY  DOSE RATIO
(keV)  (Au/Si) (keV)  (Au/Si)
2 3.970x10”" 9  4.064x10
2.702x10° 100 4.469x10°"
10 2.446x10" 125 4.224x10"
15 1.331x10] 150 3.377x10
20 1.617x10" 200 1.960x10]
30 2.008x10" 300 8.028x10°
40 2.284x10" 200  4.428x10°
50 2.478x10] 500  2.976x10°
60  2.585x10 600 2.264x10°
70 2.598x10] 800  1.617x10°
80  2.582x10" 1000 1.340x10°

Figure A-13. Bulk dose ratio in gold compared to

energetic photons
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PHOTON PHOTON i}
ERERey ELECTRON YIELD (C/cal) pHoTon ELECTRON YIELD (C/cal)
(keV) Carbon Aluminum Gold (keV) Carbon Aluminum Gold
; - - - 90 1.882x1077 6.372x10"7 2.235x10°
$ - - - 100 2.152x10"7 5.542x107°  2.079x10”
10 1.705x1077 1.797x1078 1.496x10~7 125 3.026x10"7 4.835x10°% 1.786x10"
| 15 7.255x107° 9.154x10°8 1.511x107° 150 3.965x107° 4.835x1070 1.553x10"
: 20 6.618x1077 9.410x10"8 1.889x10°6 200 6.078x10"7 5.967x1070 1.078x10°
30 3.525x10°° 5.408x10°8 1.171x1076 300 1.025x10°% 9.062x107° 6.215x10”
40 2.158x10"7 3.060x10°8 7.529x1077 400  ..396x10°8 1.202x10°8 4.125x10"
50  1.620x107° 2.020x10°8 5.164x107 500 1.704x10°8 1.451x1078 3.467x10
60 1.450x1070 1.360x10"% 3.864x1077 600 1.954x10°8 1.653x10°% 2.651x10°
70 1.487x10°2 9.930x10™° 2.919x1077 800 2.331x10°% 1.959x107% 2.099x10"
80 1.640x107° 7.708x10°% 2.095x1077 1000 2.574x10°8 2.155x107 1.875x10
Figure A-14. Electron yields forward-emitted from materials inside box
due to monoenergetic photons incident at 1 cal/cm?
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3 (keV)  FORWARD REVERSE (keV)  FORWARD REVERSE
3 2 - i 90  6.372x10°  2.178x107°

i 5 . . 100 5.542x1077  1.724x107°

: 10 1.797x10°8  71.350x1078 125 4.835x1070  1.204x107°
: 3 15 9.154x10°C  6.381x107° 150 4.835x10°°  1.015x107°
: S 20 9.410x107°  6.159x10°8 200  5.967x1070  1.065x107°
- L 30 5.408x10°°  3.172x1078 300 9.062x10°°  1.495x107°
IR 40 3.060x10°8  1.656x107 200 1.202x10°8  1.922x107°
3 ;.i: 50  2.020x10°8  9.882x107° 500  1.451x10°8  2.271x107°
1 Ly 60  1.360x10°%  6.120x107° 600  1.653x10°%  2.534x107°
N i - - - -
E , 70 9.930x107°  4.091x107° 800  1.959x10°%  2.864x107°
: ‘ 80  7.708x107°  2.905x107° 1000 2.155x10°%  3.126x107
i 3
:: . 1

4?
3 ’(5 Figure A-15. Electron emission from aluminum behind box wall due to
4 X monoenergetic photons incident at 1 cal/cm?
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0.1L—1 1 a1 1l 1 111
1 10 100 1000

PHOTON ENERGY (keV)

RE-01443
PHOTON ELECTRON YIELD RATIOS PHOTON ELECTRON YIELD RATIOQS
ENERGY FORWARD/ HIGH-Z/ ENERGY FORWARD/ HIGH-Z/
(keV) REVERSE LOW-Z (keV) REVERSE LOW-Z

2 1.035 5.336 90 2.926 118,7
5 1.211 56,93 100 3.215 96,60
10 1.323 87.72 125 4.016 59.01
15 1.435 208.2 150 4.762 39.17
20 1.528 285.5 200 5.601 17.73
30 1.705 332.1 300 6.061 6.063
40 1.849 348.9 400 6.253 2.974
50 2.044 316.8 500 6.390 2.034
60 2.223 264.8 600 6.523 1.357
70 2.427 196.2 800 6.839 0.9004
80 2.653 127.7 1000 7.121 0.7286
Figure A-16. Electron emission ratios due to moncenergetic photons.

The high-to-low-2Z ratio is for forward emission from
£old compared to carbon. The forward-to-reverse ratio
is for aluminum.
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- 30 1.406x10°  7.001x10° 300 9.48ax10%  1.181x10%
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(keV) [rad(Si)/cal/em™] (keVv) [rad(Si)/cal/cm”]
- 90 1.202x10°
- 100 1.980x10°
d 10 - 125 3.985x10°
: 15 - 150 5.520x10°
. ‘ 20 - 200 7.204x10°
| 30 1.332x100 300 1.011x10°
¥ 40 5.340x10° 400 1.100x10°
| 1 50 3.771x10° 500 1.158x10%
Nt 60 6.607x10° 600 1.205xi0%
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Figure A-18. Dose inside shielded box due to monoenergetic photons
incident at 1 cal/cm?
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Figure B-1. Blackbody photon spectra
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o Figure B-10. Electron yield inside cables of shield thicknesses
: s 3 and 20 mils due to blackbody photon spectra inci-
' E dent at 1 cal/cm?
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Figure B-11. Dipole moment inside cable dielectric due to blackbody
photon spectra incident at 1 cal/cm?. Copper shield
thicknesses are indicated beside the curves.
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TEMPERATURE BULK DOSE RATIO
(keV) [rad(5i)] (Au/Si)
1 1.15x10° 4.84
2 2.88x10° 9.43
5 7.39x10° 14.0
8 5.50x10° 15.7
10 4.21x10° 16.7
15 2.20x10° - 18.4

Figure B-12. Bulk dose and dose ratio inside box due to blackbody
photon spectra incident at 1 cal/em?
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Figure B-13. Forward-emitted electron yield inside box duezto
blackbody photon spectra incident at 1 cal/cm
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Figure B-16. Dose inside shielded box due to blackbody photon
spectra incident at 1 cal/cm?
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APPENDIX C

RESPONSE PARAMETER RESULTS
FOR BLACKBODY SPECTRA
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Diode potential and scaled current due to incident blackbody
spectra of temperature T (keV). F is the photon flux, J is
the electron current Jdensity, and d is the plate spacing.
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Figure C-2. Dipole moment and scaled electric field at the front face of a

diode due to incident blackbody spectra of temperature T (keV).
F is the photon flux, E is the electric field, and d is the
plate spacing.
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Figure C-3. Diode potential and scaled current due to blackbody combination

spectra. Equal fluxes of temperature T (indicated in keV) are
incident. F is the photon flux, J is the electron current, and
d is the plate spacing.
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APPENDIX D

PROGRAMMABLE CALCULATOR CODES FOR
ARBITRARY SPECTRUM COMPUTATIONS
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The excitation parameters discussed in Section 4 of this report are
conveniently obtainable for arbitrary photon spectra by means of program-
mable calculator codes described here. The programs are designed for use
on the Texas Instruments TI-59 calculator and are available on magnetic
caras. Arbitrary spectra can be keyed in or read in from magnetic cards,
and the calculator will automatically compute the excitation parameters.

Brief descriptions of the codes and specific user instructions follow.

D.1 CODE OVERVIEW

A brief overview of the codes is helpful in understanding their oper-
ation. The calculator memory is divided into four banks which can be pro-
grammed with up to 240 steps each. Memory can be partitioned to interchange
code steps and data storage, with up to 30 numbers stored in each bank. One
insertion of a magnetic card sets all locations in a bank of memory. There-
fore, the memory has been programmed according to the divisions shown in
Table D-1. The memory allocation shown limits the program to only 240
steps, but it has the considerable advantage of permitting spectra to be
stored on one set of cards and excitation parameter data on another set.

The user may read in a spectrum to bank 2 and compute parameters for differ-
ent satellite configurations by simply reading in different data to bank 3

-d and repeating the calculation.

' Table D-1. TI-59 Memory Allocation for Computation of
b Spectrum Evaluation Parameters

|
g ‘2 Bank 1 Program Up to 240 steps
E ;f3 Bank 2 Spectrum Up to 14 point pairs
' i Bank 3 Excitation Up to 15 point pairs
' parameter curves
) Bank 4 Working storage
3
‘ l; D.2 USER INSTRUCTIONS
f Step-by-step instructions for using the programs are given below. The
; ‘ user is assumed to have an elementary knowledge of the calculator.
»
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D.2.1 Setup
Partition calculator memory to 240 maximum program steps with 90 data
locations:
* Press 9 Op 17
* Press CLR

+ Insert program card (called ARBSPC)
Calculator will display 1, indicating bank 1 has been programmed.

D.2.2 Spectrum Input

» Punch spectrum into memory bank 2:
Energies (keV) locations 60-73
Differential fluence (energy/energy/area) locations 75-88
(To save this <pectrum on a card, press CLR, then WRITE, and
insert a blank card.)

Up to 14 energies and 14 differential fluences may be input. A spec-
trum may be read in from a card by pressing CLR and inserting the card. The
calculator will display 2., indicating memory bank 2 has been programmed.
See optional input routine, TLBSET, for rapid spectrum input. Spectra are
normalized automatically by the code. Photon energies must be less than

1000 keV. Spectra must have at least three energy bins.

D.2.3 Excitation Parameter Data Input

Read selected excitation parameter weighting factor (see Appendix A)
into locations 30-59 (bank 3):
» Press CLR
» Insert card
Calculator displays 3., indicating bank 3 has been programmed.

D.2.4 Execution

The calculator is now ready to compute the selected parameter for the

spectrum chosen.
* Press RST
+ Press R/S
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Execution commences and numbers flash on the display for each energy bin in
the order below.

€ ith bin energy (keV)

¢Oe ith differential fluence (energy/energy/area)

Z:QOe Ag; cumulative sum of fluences in each bin (energy/area)
i i

When the display becomes fixed, the value is total fluence:

Nbins
2: Qoe. Aei {energy/area)
i=]1 1
where Nbins is the total number of energy bins. This is the total fluence
incident on the exterior of the excitation parameter configuration chosen.
Press R/S
Calculator displays Excitation Parameter P (per unit fluence).
Press R/S
Calculator displays ratio Pprevious/pcurrent’ the ratio of the previously
calculated excitation parameter to the current one. Thus, if a dose ratio
Au/Si is being computed, for example, the dose for gold is computed first,
then a new card read in for silicon and the process repeated. The third
static display yields the ratio on the second pass.

The execution steps are summarized in Table D-2.

D.2.5 Optional Spectrum Input Routine

A routine is available to expedite table entries and checkouts. In
our case, we want to input a string of energies into memory beginning at
location 60, and the corresponding differential fluences beginning at loca-
tion 75.

To perform this operation, press 9 Op 17 to partition memory, then
read in the TLBSET code card. Press RST, then R/S. The calculator now
displays 1., indicating energy bin 1. Energies may now be input by keying
them in and pressing R/S. The index of the next bin then appears. To

indicate the last bin, enter a zero and the calculator will automatically
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Table D-2. Summary of Program Setup and Execution, ARBSPC

Partition calculator: Press 9 Op 17

Input program Bank 1
Input spectrum Bank 2
Input data table Bank 3
Press RST
Press R/S

Calculator pauses briefly for each energy bin and displays:

€.
1

¢
Oei

.Z QOE:. Aei
1 1

Calculator stops and displays:

Nbins
2: ® Ac. (total fluence incident)
h Qe. i
i=1 i
Press R/S. Calculator displays P (excitation parameter/cal/cmz)

/P

Press R/S. Calculator displays ratio Pprevious

current
To continue,

Press CLR

Read in new spectrum or data table

Press RST

Press R/S
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skip to location 75 and display 1. for bin 1. At this point, begin entering
differential fluences.
The values may be displayed in succession by pressing E and then R/S,

R/S, etc. Displays beginring at any location can be commenced by entering

the desired location and pressing A”. The calculator will automatically
begin displaying at location 60 if no entry is made into A-,
A summary of TLBSET operations is given in Table D-3. A summary of

calculator outputs is given in Table D-4.

o

Table D-3. Summary of Input/Output Routine TLBSET Instructions

Shguaii At st

: Labels: A* B~ c’ D E”

g Starting Starting

: location for location to

; display aultiply, R/S,

A (default = multiply by,

} value in B) R/S

: B C D E
Starting Display
location for values
storage beginning
(default=60) at A~

* Press 9 Op 17
» Read in program TLBSET

‘ﬁ * Press RST, R/S
« Enter beginning storage location in B (default value = 60)
} « Enter energy, press R/S, energy, R/S, etc.

« Terminate string with 0., R/S
1 + Enter differential fluence, press R/S, etc.

To display values beginning at a location other than B, enter

the location in A“ after RST, then press E, R/S, R/S,

‘ 3 + To display values, press E, R/S, R/S, .
&
i
3

- I

e :f‘\
B o

p—

&
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Table D-4. Spectrum Evaluation Program Symbols and Units

Energy

Photon fluence

Photon differential fluence
Dose

Electron yield

Velocity

Electron dipole moment

keV

cal/cm2
cal/cmz/kev
rad (material)
C/cal

m/sec

C-m/cal
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