
	REPORT DOCIMENTATION PAGE	READ INSTRUCTIONS
	ALFORT DUCUMENTED TAUS	BEFORE COMPLE TING FORM
	AD-AQ85 \$57	(9)
	P. TITLE (and Submited	Mastaris Phasis
(e)	Search Priorities for a Target	March 1980
\leq	Probability Area.	6. PERPORMINE ORG. REPORT NUMBER
1		
[](Patricia Ann Tracey	
4	. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAI
	Naval Postgraduate School	
	Monterey, California 93940	
	11 CONTROLLING OFFICE NAME AND ADDRESS	18. REPORT DATE
	Naval Postgraduate School (//	Marine 1989
	Monterey, California 93940	\$7 (2) 88
	14 MONITORING AGENCY NAME & ADDRESS(I MIL mont from Controlling Office)	15. SECORITY CLASS. (of this report)
		Unclassified
		144. DECLASSIFICATION/DOWNGRADIT
	14. DISTRIBUTION STATEMENT (of this Reserve	L
	Approved for public release; distribution	unlimited.
	Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the observent entered in Break 38, if different Am	unlimited.
	Approved for public release; distribution 17. DISTRIBUTION STATEMENT fol the electronic entered in Block 30, 11 different Am 18. SUPPLEMENTARY NOTES	unlimited.
	Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the electronic enforced in Block 30, if different Am 18. SUPPLEMENTARY HOTES 19. KEY WORDS (Continue on resource orde if necessary and identify by block number, TI-59 Search Submarine Probability Area (SPA)	unlimited.
	Approved for public release; distribution 17. DISTRIBUTION STATEMENT for the electronic entered in Block 30, 11 different Am 18. SUPPLEMENTARY HOTES 19. KEY WORDS (Continue on recruse of the 11 necessary and Identify by Mock number, TI-59 Search Submarine Probability Area (SPA) Over the Horizon (OTH)	unlimited.
	Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the character entered in Block 20, 11 different in 18. SUPPLEMENTARY HOTES 19. KEY WORDS (Centilings on correct of the network of the second of the se	e of bearing measured a threat whose position rveillance sensor is timate of the threat, te of the sensor are the threat lies on a ulator program is hen the threat location

COLUMITY CLASSIFICATION OF THIS PAGE/MAN Pres Baland

#20 - ABSTRACT - (CONTINUED)

Adensity can be assumed to be bivariate normal. Computations required when significant time has elapsed since the original estimate of threat location when the density can no longer be considered bivariate normal are discussed.

A

UNCLASSIFIED

2

SECURITY CLASSIFICATION OF THIS PAGE/Stion Date Entered)

Approved for public release; distribution unlimited.

Search Priorities for a Target Probability Area

by

Patricia Ann Tracey Lieutenant Commander, United States Navy B.A., College of New Rochelle, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL March 1980

Author

Albeiten Maltsbingen Bold beiten tigeten har vorstanden der Lichten Bereiten und ist teiten beiten seiten seit in unter

Approved by

	Fatricia U. Tracey	
by:	W. Sughers.	
-	AL	Thesis Advisor
	if that	
		Second Reader
	Multion DAncie	3
-	Chairman, Department of Oper	A flohs Research
	A/schrady	
-	Dean of Information and	Policy Sciences
	()	

ABSTRACT

The problem of determining whether a line of bearing measured by a local surface-based sensor coincides with a threat whose position has been previously estimated by an ocean surveillance sensor is addressed. Uncertainties in the position estimate of the threat, in the bearing error and in the position estimate of the sensor are considered in measuring the probability that the threat lies on a given bearing from the sensor. A TI-59 calculator program is developed which calculates this likelihood when the threat location density can be assumed to be bivariate normal. Computations required when significant time has elapsed since the original estimate of threat location when the density can no longer be considered bivariate normal are discussed.

TABLE OF CONTENTS

ē.

8 19 J

ì

7

į

i ç

.

I.	INTRODUCTION	7
II.	THEORETICAL BASES	10
III.	ALGORITHMS	20
	A. BIVARIATE NORMAL THREAT LOCATION DENSITY	20
	B. SENSOR POSITION UNCERTAINTY	27
	C. THREAT DISTRIBUTION NOT BIVARIATE NORMAL AFTER TIME LATE ELAPSED	28
IV.	CONCLUSIONS	37
APPENDIX A: TI-59 PROGRAM VERBAL FLOW AND USER'S INSTRUCTIONS		41
APPEN	DIX B: TIME LATE VERBAL FLOW	58
CALCULATOR PROGRAM		66
LIST	OF REFERENCES	85
INITIAL DISTRIBUTION LIST		

5

.....

ACKNOWLEDGMENT

●「開催時間の時間の時間にはないない」という。ここで、ここでは、ここでは、12歳にたんでは、いくしていたい。

The author wishes to express her gratitude to Captain Wayne P. Hughes, USN and Professor R. Neagle Forrest for their continued guidance throughout the period of this research.

I. INTRODUCTION

As long range surface launched weapons systems continue to be introduced into the fleet, the operational commander is increasingly faced with the problem of being able to launch weapons at targets located beyond the horizon. Successful employment of such weapons is dependent not only on the ability to detect, classify and localize targets at considerable distances, but also on the ability to distinguish the true target from a potentially larger field of false targets. While long range ocean surveillance sensors may be of assistance in the identification and localization of targets, the information provided may not be refined sufficiently to permit effective targeting of long range weapons on that basis alone. The on-scene commander must in general rely on additional data on target location gathered locally and close to the time of weapons launch for accurate targeting. Thus, he must still be able to detect and track the desired target and be able to distinguish it from other targets within range of his sensors.

The procedures developed in this paper are designed to be of assistance in addressing the last of these problems. They are applicable when the information available is an error ellipse around a threat location estimated by an ocean surveillance sensor and bearings only data generated by a local surface-based sensor. The question of whether a target

7

detected by the local sensor is the same as that whose estimated position was provided by an external sensor can only be addressed if information is available on the locations and tracks of all possible targets within range of the local sensor. Since such data is generally not available, this paper does not attempt to answer that question, but rather develops a method by which bearing information from different sensors can be compared as to the likelihood of each bearing being associated with the threat identified previously. It is envisioned that these likelihoods can be then used to induce an ordering among bearing data gathered by different sensors or, conceivably, conflicting data gathered by one sensor. The ordering would be based on the likelihood that each bearing will contribute to refining the original estimate of the location of the target of interest. This information could be applied in a number of ways: as a quide to allocation of more capable sensor resources for purposes of obtaining targeting information; as a guide for allocation of weapons against more than one threat; as a means of pre-processing data before entering it into a target motion model, thereby reducing the chance of introducing unrelated data.

To determine the likelihood that a given line of bearing and the threat coincide, consideration was given to the uncertainties inherent in estimation of target position, in the measurement of bearings by a particular sensor and in estimation of sensor location. It is assumed that at some

time t_0 , an ocean surveillance sensor detects a threat whose position is estimated to be within an elliptical region with $p_1 \times 100$ % certainty. The estimated position data are received and converted by the on-scene commander into a probability distribution described by a truncated bivariate normal density function.

It is further assumed that the standard error σ_{β} characteristic of the local sensor is known. The sensor bearing B with bearing error σ_{β} is then projected from the sensor position through the threat density function.

Since sensor position relative to the target may itself be subject to navigation error, the uncertainty is introduced as a truncated circular bivariate normal distribution centered at location (u_0, v_0) with standard deviation σ .

A TI-59 calculator program is developed which estimates the likelihood that the threat identified by an external sensor lies along bearing 3, given the threat distribution, the bearing error, and sensor position distribution relative to the threat.

The theoretical basis for this calculation is presented in Chapter II. The algorithms used in designing the calculator program are described in Chapter III. A program listing and verbal flow are provided in Appendix A along with instructions for the user. Appendix B contains a verbal flow of a program designed for use when considerable time has elapsed since the initial estimate of the location of a moving target.

II. THEURETICAL BASES

The general approach to determining the likelihood that a measured line of bearing 3 is the true bearing from the sensor to the threat identified and localized by an external sensor is discussed in this chapter. Calculations required when using threat position information both as initially generated by the external sensor at time zero, t_0 , and as distorted to account for an intervening time late, t_L , are discussed. Uncertainties in bearing measurement and sensor position are included.

Initially, assume that sensor position is known with certainty. Let β_T be the true bearing of the threat from the sensor. Since threat location is uncertain, β_T is a random quantity with probability density function $f_{S_TRUE}(\beta_T)$. Let $f_3(\beta;\beta_T)d\beta$ be the probability that the errors in bearing measurement are such as to give rise to a bearing on the threat in the interval $d\beta$ about the observed value β when the true bearing is β_T . Then the likelihood of observing a bearing β is:

$$f'(\beta) = \int_{\beta_{T}} f_{\beta}(\beta;\beta_{T}) f_{\beta_{TRUE}}(\beta_{T}) d\beta_{T} . \quad (1)$$

The density $f_{3_{\text{TRUE}}}(3_{\text{T}})$ is determined by the probability density function of threat location at time t, $f_{X,Y}(x,y;t)$.

Given the probability density function of threat location at time t and assuming that bearing errors are normally distributed with mean zero, consideration is limited to the probability that the observed bearing is the true bearing of the threat, given the threat is contained in a planar region E and the true bearing β_{T} is in an interval about 3 with upper and lower bounds β_U and β_L . The region E is selected to be the minimum area planar region which contains the threat with a specified high probability p1. The interval $(\beta_{L}^{\beta}, \beta_{U}^{\beta})$ is selected so that, for all the possible values of β_m contained in the interval, β is within an interval of specified high probability p_2 around a_T . The fan (a_L, a_U) is symmetric about 3 so that it represents the minimum area region which meets the above criterion. The likelihood of observing 3 when the threat is in E and β_{T} is in (β_{T}, β_{II}) is determined by integrating expression (1) above, over a region defined in the manner of the shaded area of Figure 1(a).

If sensor position is not certain, assume that it is distributed in accordance with a circular bivariate normal distribution $f_{U,V}(u,v)$. Again, consideration is limited to determining the likelihood of observing a bearing β given that the threat is contained in a planar region, E, β_T is in (β_L, β_U) , and the sensor is contained in a planar region C. The region C is selected as the minimum area planar region which contains the sensor with a high probability p_3 . The region of E over which f'(3) is evaluated expands as the shaded region of Figure 1(b).

, production of the state of th

Since the measurement errors involved in estimating the threat position, the sensor position and the bearing angle arise from different measurement procedures, it is reasonable to assume that errors are independent. The probability densities required to perform the above calculations can be estimated as follows.

At time t an ocean surveillance sensor estimates the position of the threat to be located within an elliptical area characterized by the parameter set $E = \{X, Y, \theta, A, B\}$ with confidence $p_1 \times 100$ %. The elements of the parameter set E are respectively: X the latitude of the estimated threat position, Y the longitude of estimated threat position, θ the orientation of the major axis from true North, A the length of the semi-major axis, and B the length of the semiminor axis. Since the measurement errors in determining threat position are generally assumed to be normally distributed, the ellipse characterized by E represents the minimal area $p_1 \times 100$ % confidence region about the mean (X,Y). Treating this ellipse as the p, probability region of a bivariate normal distribution, a density function for the threat position at time to can be estimated. For convenience, locate the origin of a rectangular coordinate system at the center of the ellipse, (X,Y), with positive x-axis located along the major-axis of the ellipse at a bearing θ from true North. Assume a flat earth in the region of interest. Let $t_{n} = 0$. The mean of the threat position density $f_{x,y}(x,y;0)$ is then the point (0,0). The variances in the X and Y directions can

be derived from the fact that the region with minimal area which contains the threat with probability p_1 is a k-sigma ellipse where k is determined from the relationship:

 $P[\text{threat located in }k \cdot \text{sigma ellipse}] = 1 - e^{-k^2/2}$

Thus,

$$\sigma_{\rm X}^2 = (A/k)^2$$

and

$$\sigma_{\rm Y}^2 = (B/k)^2$$

where

$$k = \sqrt{-2 \ln(1-p_1)}$$
.

X and Y are assumed to be independent.

If the course and speed of the threat are known with certainty to be ψ and s respectively, the probability density of the threat position at time late t_L can be shown to be again a bivariate normal with mean $(st_L \cos(\theta - \psi), st_L \sin(\theta - \psi))$ and variances σ_X^2 , σ_Y^2 . The p_1 probability region of the density at time t_L would then be an ellipse congruent to that characterized by the set E above but centered at the point $(st_L \cos(\theta - \psi), st_L \sin(\theta - \psi))$ (Figure 2) [Ref. 1].

FIGURE 2. TIME LATE ELLIPSE, KNOWN COURSE AND SPEED

In some cases, the motion of a submarine on patrol in a large area can be characterized, when t_L is large, by an expansion of the probability area with time at a rate D. The result in such a case is that $f_{X,Y}(x,y;t_L)$ is still bivariate normal with mean (0,0) but with variances $\sigma_X^2 + Dt_L$ and $\sigma_Y^2 + Dt_L$.

When the motion of the threat cannot be described in the above manner, and the course and speed are not known, but assumed to be distributed according to the densities $f_{\psi}(\psi)$ and $f_{S}(s)$, determining the probability density $f_{X,Y}(x,y;t_{L})$ is a considerably more complex problem. Let $(x_{O}(s,\psi), y_{O}(s,\psi))$ be the coordinates of the point at which the threat would have to be located at time zero in order to reach the point (x_{L}, y_{L}) at time t_{L} if the threat speed were s and course ψ . Thus, $x_{O}(s,\psi) = x_{L}-st_{L}\cos(\theta-\psi)$ and $y_{O}(s,\psi) = y_{L}-st_{L}\sin(\theta-\psi)$ (Figure 3). Then,

$$f_{X,Y}(x,y;t_{L}) = \int_{0}^{\infty} \int_{0}^{360} f_{X,Y}[x_{O}(s,\psi),y_{O}(s,\psi);t_{O}] \cdot f_{\psi}(\psi)f_{S}(s) d\psi ds \quad [Ref. 1].$$

This density is no longer normal. In the special case when A = B, i.e., $\sigma_X^2 = \sigma_Y^2$, ψ has a uniform distribution over the interval (0°,360°) and S is known with certainty, as shown in Reference 2, the density changes with time as in Figure 4.

William a state of the second state of the sec

A share of a state

FIGURE 3. TIME LATE POSITION, COURSE AND SPEED UNCERTAIN

The distribution of the bearing error measured by the local sensor can be estimated if the standard error of the sensor, σ_{β} , is known. The bearing error is then assumed to be normally distributed with mean zero and variance σ_{β}^2 .

Assume that the estimated sensor location (u_0, v_0) is accurate to within R nautical miles with $p_3 \times 100$ % confidence. The density $f_{U,V}(u,v)$ of sensor location can be assumed to be a circular bivariate normal with mean (u_0, v_0) and variance $\sigma^2 = R^2/k^2$. The value of k is determined from the relationship:

 $P[(u,v) \text{ contained in } k\text{-sigma region}] = 1 - e^{-k^2/2}$,

where the probability on the left is p_3 in this cas .

Since the evaluation of f'(3) considering sensor position density and bearing error density does not generalize to a closed form, algorithms are developed in the remainder of this paper for estimation of the probability (likelihood) that the threat identified by an external sensor lies on a line of bearing measured by a local sensor given that the threat is in region E, the sensor is in region C and the true line of bearing lies within (β_T, β_H) .

II. ALGORITHMS

As indicated in the previous chapter, the variety of geometrical situations which can arise depending on the location of the sensor relative to the estimated threat location precluded development of a generalized analytical procedure. Rather, algorithms are developed in this paper for numerically evaluating $f'(\beta)$. The procedures applicable to a bivariate normal threat location density have been implemented on a TI-59 calculator. Appendix A contains a listing of that program. The calculations required when the time late threat location density is no longer normal exceeded the available program capacity of the TI-59 and therefore have not been implemented. A detailed verbal flow is provided at Appendix B for future implementation on a larger machine. The algorithms used in both situations are described in this chapter.

A. BIVARIATE NORMAL THREAT LOCATION DENSITY

This case includes situations (1) where the time elapsed since generation of the initial error ellipse by the ocean surveillance sensor is negligible, (2) where the motion of the threat can be assumed to be random in the manner described above, and (3) where course and speed of the threat are assumed to be known with certainty. With appropriate modifications to the input data, all three of these situations can be addressed using the program contained in Appendix A.

In situation (1) the data entered are the parameters of the ellipse as generated by the ocean surveillance sensor. In (2), the location and orientation from North of the ellipse is the same as originally generated, but the size of the ellipse expands at some constant rate of area per unit time which must be estimated by the user. This rate D, times the elapsed time, t_L , yields the factor which must be added to the semi-major and semi-minor axes of the original ellipse. That is, if the original error ellipse is a $p_1 \times 100$ ° confidence ellipse, the semi-major and semi-minor axes of the diffused ellipse will be input as A' and B' respectively:

A' =
$$\sqrt{A^2 + (-2 \ln(1-p_1))Dt}_L$$

B' = $\sqrt{B^2 + (-2 \ln(1-p_1))Dt}_L$

In situation (3) the dimensions and orientation of the time late ellipse are the same as those of the original error ellipse, but the center of the ellipse is displaced from its original position by the known velocity times elapsed time. The updated position of the error ellipse is treated as the origin of the rectangular coordinate system for this situation and all linear measurements are made relative to this system. All angular measurements are made from true North.

Estimation of the likelihood that the threat lies on a bearing from the local sensor given that the threat is located

in a $p_1 \times 100$ % confidence ellipse and the true bearing lies within the bounds (β_L, β_U) with confidence $p_2 \times 100$ % proceeds as follows:

1. Estimate parameters of the bivariate normal density $f_{X,Y}(x,y)$ of threat location: $\mu_X = \mu_Y = 0$, σ_X^2 , σ_Y^2 .

2. Determine β_{L} and β_{U} such that an interval of length $2k_{\beta}\sigma_{\beta}$ centered on either β_{L} or β_{U} would contain β , the measured bearing, with probability p_{2} : $\beta_{L} = \beta - k_{\beta}\sigma_{\beta}$, $\beta_{II} = \beta + k_{\beta}\sigma_{\beta}$.

3. Determine sensor location coordinates relative to the origin of the threat ellipse.

4. Subdivide the angular interval (β_L, β_U) into 2n subintervals. Each subinterval k intersects the ellipse in a strip with average width W_k which corresponds to $\Delta \beta_t$.

5. At the midpoint of each subinterval k determine the equation of the line through the sensor position at the true bearing 3_k from North.

6. Let the equation of the line of bearing β_k be $X = \frac{Y-c}{m}$. Then the plane perpendicular to the xy-plane which contains this line intersects the bivariate normal threat density in a curve whose equation is

$$g(y) = \frac{1}{2\pi\sigma_{X}\sigma_{X}} e^{-\frac{1}{2}(\frac{(y-c)^{2}}{m^{2}\sigma_{X}^{2}} + \frac{y^{2}}{\sigma_{Y}^{2}})}$$
(2)

found by making the substitution $X = \frac{Y-c}{m}$ in the density function $f_{X,Y}(x,y)$. It will prove convenient to expand the right side of (2) as follows [Ref. 3]:

$$g(y) = \frac{1}{\sqrt{2\pi}} \frac{c^{2}}{\sqrt{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}}} e^{-\frac{1}{2} \frac{c^{2}}{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}}} (3)$$

$$\cdot \left[\frac{\sqrt{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}}}{\sqrt{2\pi} \sigma_{x}\sigma_{y}^{m}} e^{-\frac{1}{2} \left(\frac{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}}{m^{2}\sigma_{x}^{2}\sigma_{y}^{2}} \right) \left(y - \frac{c\sigma_{y}^{2}}{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}} \right)^{2}}{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}} \right]$$

For computational purposes, assume that the width W_k of the region of the ellipse cut out by the angular subinterval around β_k will be nearly constant through the ellipse. Let the points of intersection of the line of bearing β_k with the threat ellipse be (X_{kl}, Y_{kl}) and (X_{k2}, Y_{k2}) . Then approximate the volume of the normal density over this region by the absolute value of the product of the area under the curve g between Y_{kl} and Y_{k2} and W_k (Figure 5). Observe that the term in brackets in equation (3) above is the density function of a univariate normal random variable with mean

$$\frac{c_{\sigma_{\Upsilon}}^{2}}{\sigma_{\Upsilon}^{2}+m^{2}\sigma_{X}^{2}}$$

and variance

$$\frac{m^2\sigma_X^2\sigma_Y^2}{\sigma_Y^2 + m^2\sigma_X^2}.$$

The term preceding the brackets in (3) is the slope of the line of bearing, m, times the density of a univariate normal random variable with mean zero and variance $\sigma_{y}^{2} + m^{2} \sigma_{x}^{2}$

evaluated at c. Thus, evaluating the expression

$$|W_{k} \int_{k1}^{Y_{k2}} g(y) dy|$$

is equivalent to the computation

$$\mathbb{W}_{\mathsf{X}}^{\mathfrak{m}}\left(\frac{1}{\sqrt{\sigma_{\mathsf{Y}}^{2}+\mathfrak{m}^{2}\sigma_{\mathsf{X}}^{2}}} \stackrel{\diamond}{\Rightarrow} \left(\frac{c}{\sqrt{\sigma_{\mathsf{Y}}^{2}+\mathfrak{m}^{2}\sigma_{\mathsf{X}}^{2}}}\right) \left(\stackrel{\diamond}{\Rightarrow} \left(z_{2}\right) - \stackrel{\diamond}{\Rightarrow} \left(z_{1}\right) \right) \right) ,$$

where

$$z_{i} = (Y_{ki} - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}) (\frac{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}{m\sigma_{X}\sigma_{Y}})$$

for $i = 1, 2, \Rightarrow is$ the $P[Z \le z]$ when Z is a standard normal random variable, and \Rightarrow is the density function of a standard normal random variable.

If the substitution $Y = mX \div c$ were made in the density $f_{X,Y}(x,y)$, an analogous situation would arise with the limits of the integration being X_{k1} and X_{k2} .

7. If the value of the density under the bivariate normal curve over the region of the ellipse defined by the subinterval Δs_k is weighted by the probability of observing a bearing error $(s_k - s)$ the result is the probability of observing the bearing of the threat as 3 when the true threat location is in the segment of the ellipse defined by Δs_k . This probability is approximated as follows:

$$|W_{k}|_{Y_{kl}}^{Y_{k2}} f_{X,Y}(\frac{Y-C}{m}, Y) dY| f_{\beta}(\beta; \beta_{k}).$$

Since the bearing error is assumed normally distributed with mean zero and variance σ_{β}^2 , the value of $f_{\beta}(\beta;\beta_k)$ can be determined by the expression

$$\frac{1}{\sigma_{\beta}} \neq (\frac{\beta_{k} - \beta}{\sigma_{\beta}}),$$

where ϕ is as above the density function of a standard normal random variable.

8.

$$f'(\beta) = \int_{\beta_{t}} f_{\beta}(\beta;\beta_{t}) f_{\beta} TRUE^{(\beta_{t})} d\beta_{t}$$

is approximated by

$$\sum_{k=1}^{2n} |W_{k}[\int_{Y_{k1}}^{Y_{k2}} f_{X,Y}(\frac{y-c}{m}, y) dy] | f_{\beta}(\beta; \beta_{k})$$

The value of the sum is determined by repeating steps A.6 and A.7 above at the midpoints of each of the 2n subintervals defined in step A.4 and summing the results of each of these calculations. Obviously, the finer the subdivision of (β_L, β_U) , the more accurate will be the estimate of the likelihood, but also the longer the calculation will take.

B. SENSOR POSITION UNCERTAINTY

The result of the above calculation will be the likelihood f'(β) that the threat lies along the bearing measured by the sensor given that the threat is located within the threat ellipse and the true bearing is within the interval (β_L , β_U) and the sensor is at the position used to perform the calculation. We next will introduce additional calculations that are required to account for the fact that the sensor position is not known with certainty.

1. If the position of the sensor is estimated as being within R nautical miles of (u_0, v_0) , its assumed coordinates in the xy-system, with $p_3 \times 100$ % confidence, estimate the parameters of the sensor location density $f_{U,V}(u,v)$ with mean zero and variance σ^2 : mean = (u_0, v_0) , variance, $\sigma^2 = R^2/(-2 \ln(1-p_3))$ in threat centered coordinates.

2. The bearing measured by the sensor is β regardless of the sensor location. Assume that the area of intersection of the angular wedge (β_L, β_U) and the threat ellipse does not change significantly as the sensor position is moved along the line of bearing β . Then the effect of the bivariate normal distribution of sensor location can be approximated by considering only the univariate normal density along a line through (u_0, v_0) perpendicular to β . Repeat the calculations in steps A.3 through A.8 above with the sensor located at each of the three points (u_0, v_0) , $(u_0 + .97\sigma \cos(\theta - \beta - 90))$, $v_0 + .97\sigma \sin(\theta - \beta - 90)$, and $(u_0 - .97\sigma \cos(\theta - \beta - 90), v_0 - 97\sigma \sin(\theta - \beta - 90))$. If the line through (u_0, v_0) perpendicular to β is subdivided symmetrically about (u_0, v_0) such that 1/3 of the univariate normal density lies above each subinterval, the three points chosen above represent the "center of gravity" of each third of the density (Figure 6).

3. If R is chosen to include a significant proportion of the sensor density, i.e., on the order of 2σ or greater, the probability of the sensor being located in each of the three regions is approximately 1/3. Thus, if p_3 is on the order of .86, multiply each result in step B.2 by 1/3.

4. Summing the results of steps B.2 and B.3 yields an estimate of the likelihood that the threat lies at bearing β given the threat is in the $p_1 \times 100$ % confidence ellipse, β_T is in (β_L, β_U) and the sensor is in a $p_3 \times 100$ % confidence region. That is, the likelihood is estimated by

$$f'(\beta) = \sum_{j=1}^{3} \frac{1}{3} f_{j}'(\beta)$$
,

where j is the index of sensor position in figures 5 and 6.

Instructions for application of the TI-59 program to calculate the above are included in Appendix A.

C. THREAT DISTRIBUTION NOT BIVARIATE NORMAL AFTER TIME LATE ELAPSED

The basic approach to evaluating $f'(\beta)$ when the time late distribution of the threat is no longer bivariate normal is the same as that just discussed. The principal difference

279.

14 Parts Parts

FIGURE 6. ESTIMATE OF SENSOR POSITION DENSITY

arises from the fact that the _me late density is significantly more complex in this case.

The threat distribution becomes distorted from the normal after some time late when the course and speed of the threat are constant but not known with certainty. Application of the method described herein requires that the user assume a discrete distribution of the speed of the threat with upper and lower bounds S_{M} and S_{1} , respectively. In addition, the threat course is assumed to be uniformly between 0° and 360°.

The density of threat location after some time late t_L when the threat speed is s_i then becomes [Ref. 1]:

$$f_{X,Y}(x,y;t_{L},s_{i}) = \frac{1}{2\pi\sigma_{X}\sigma_{Y}} \int_{0}^{360} \exp\left[-\frac{1}{2}\left(\frac{x+s_{i}t_{L}\cos(\theta-\psi)\right)^{2}}{\sigma_{X}^{2}} + \frac{\left(y-s_{i}t_{L}\sin(\theta-\psi)\right)^{2}}{\sigma_{Y}^{2}}\right] \frac{d\psi}{360}$$

where θ is the bearing of the major axis from North. Note that the new threat density is still centered at the same position as the time zero ellipse but its shape changes as in Figure 4 of Chapter II. If the threat speed is s_i , and the course is uniformly distributed over $(0^\circ, 360^\circ)$, the outer limit of the new planar region containing the threat after time t_L has elapsed, given that it was originally located in the $p_1 \times 100$ % confidence ellipse with semi-axes A and B, can be represented by an ellipse with semi-major axis $A+s_it_L$ and semi-minor axis $B+s_it_L$ (Figure 7). Thus the

region over which the density will be evaluated is still the intersection of an ellipse with an angular wedge, recalling however that the density is no longer normal. Further, the new elliptical region does not represent a $p_1 \times 100$ % confidence region of the time late density.

Calculation of the likelihood that the threat lies along bearing ß given that the threat lies in the $p_1 \times 100$ % ellipse at time zero, that the true bearing lies in (β_L, β_U) , that the sensor lies in the $p_3 \times 100$ % circle and that the speed is s_i proceeds as follows:

1. Estimate the parameters of the original normal distribution: mean = (0,0), $\sigma_X^2 = A^2/(-2 \ln(1-p_1))$, $\sigma_v^2 = B^2/(-2 \ln(1-p_1))$.

2. Determine the upper and lower bounds on the true bearing wedge, $\beta + k_{g}\sigma_{g}$ and $\beta - k_{g}\sigma_{g}$.

3. Determine the time late planar region as the ellipse with semi-major axis equal to $A + s_i t_L$ and semi-minor axis equal to $B + s_i t_L$.

4. Determine the position of the sensor relative to the ellipse center.

5. Subdivide the bearing fan $(\beta - k_{\beta}\sigma_{\beta}, \beta + k_{\beta}\sigma_{\beta})$ into 2n subintervals.

6. At the midpoint of each subinterval, determine the equation of the line through the ship position at that bearing β_k .

7. Let the equation of the line of bearing β_k be $X = \frac{Y \cdot c}{m}$. Then, the plane perpendicular to the xy-plane which contains this line intersects the time late threat density in a curve whose equation is

$$g_{L}(y) = \left(\frac{m}{\sqrt{2\pi}\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}e^{-\frac{1}{2}\frac{c^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}, \left(\frac{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}{\sqrt{2\pi}m\sigma_{X}\sigma_{Y}}\right) - \frac{1}{2}\left[\left(\frac{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}{m^{2}\sigma_{X}^{2}\sigma_{Y}^{2}}\right)(y - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}})^{2}\right] + e^{-\frac{1}{2}\left[\left(\frac{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}{m^{2}\sigma_{X}^{2}\sigma_{Y}^{2}}\right)(y - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}})^{2}\right]}$$

 $\cdot \int_{0}^{360} \exp\left[-\frac{1}{2} \frac{(s_{i}t_{L})^{2}\cos^{2}(\theta-\psi)-2s_{i}t_{L}y\cos(\theta-\psi)}{m^{2}\sigma_{v}^{2}}\right]$

+
$$\frac{(s_i t_L)^2 \sin^2(\theta - \psi) - 2s_i t_L y \sin(\theta - \psi)}{\sigma_Y^2}] \frac{d\psi}{360}$$
(4)

found by making the substitution $x = \frac{y-c}{m}$ in the density function $f_{x,y}(x,y;t_L)$ and expanding.

For computational purposes, assume that the width W_k of the region of the time late threat ellipse cut out by the angular subinterval around β_k will be nearly constant through the ellipse. Let the points of intersection of the line of bearing β_k with the time late threat ellipse be (X_{kl}, Y_{kl}) , (X_{k2}, Y_{k2}) . Then approximate the time late density at speed s_i over this region by the absolute value of the product of W_k and the area under the curve g_L between Y_{kl} and Y_{k2} . The area under curve g_L can be approximated as follows. Subdivide the interval (Y_{k1}, Y_{k2}) into n_1 segments of length h. Evaluate g_L at the midpoint of each segment, Y_J . Note that the first term in parenthesis in (4) is a constant equal to m times the value of the density of a normal random variable with mean zero and variance $\sigma_Y^2 + m^2 \sigma_X^2$ evaluated at c. The second term in parenthesis is the density function of a normal random variable with mean

$$\frac{c\sigma_{\chi}^{2}}{\sigma_{\chi}^{2}+m^{2}\sigma_{\chi}^{2}}$$

and variance

$$\frac{m^2\sigma_X^2\sigma_Y^2}{\sigma_Y^2+m^2\sigma_X^2}$$

evaluated at y. The variable y also appears in the integral term in equation (4). Numerically evaluate this term of (4) with $y = y_J$. Let $g_I(y_J)$ be the result of this computation. Then, evaluating the area under the curve g_L between Y_{kl} and Y_{k2} is equivalent to the calculation:

$$\int_{J=1}^{n_{1}} \frac{m}{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}} \phi \left(\frac{c}{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}\right) \frac{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}{m\sigma_{X}\sigma_{Y}} \phi(z_{J}) g_{I}(y_{J})$$

where $\phi(\cdot)$ is the density function of a standard normal random variable, and

$$z_{J} = (y_{J} - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}) (\frac{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}{m\sigma_{X}\sigma_{Y}})$$

An analagous situation arises if the substitution Y = mX + cis made for y in the time late density $f_{X,Y}(x,y;t_L)$.

8. The value of the density over the subinterval containing β_k is then weighted by the instantaneous probability that the bearing error is $\beta_k - 3$:

$$\begin{vmatrix} \mathbf{w}_{k} & \int_{k1}^{\mathbf{Y}_{k2}} \mathbf{f}_{\mathbf{X},\mathbf{Y}}(\mathbf{x}_{L},\mathbf{y}_{L};\mathbf{t}_{L}) d\mathbf{y}_{L} & \mathbf{f}_{\beta}(\beta;\beta_{k}) \end{vmatrix}$$

9. Steps C.7 and C.8 are then repeated for each subinterval of (β_L, β_U) and the results of each calculation are summed.

10. The uncertainty in sensor location is accounted for by repeating steps C.4 through C.9 with the assumption the sensor is located at each of the three points in Figure 5, multiplying by the probability the sensor lies in that interval and summing each result.

11. The result of calculations in steps C.1 through C.10 is the likelihood that the threat lies on bearing β given the threat was originally located in the $p_1 \times 100$ % confidence ellipse, $\beta_T \in (\beta_L, \beta_U)$, the sensor is located in the $p_3 \times 100$ % circle and the threat speed is s_i . The condition that the speed is s_i is removed by repeating the
calculations C.1 through C.10 for each of the speeds s_i , i = 1, ..., M multiplying the result by the probability that the speed equals s_i and summing all M results. The final result is the likelihood that the threat lies on β given it was originally located in the $p_1 \times 100$ % ellipse, $\beta_T \in (\beta_L, \beta_U)$, and the sensor is in the $p_3 \times 100$ % circle estimated as

$$\sum_{i=1}^{M} P[S = s_{i}] \sum_{j=1}^{3} \frac{1}{3} f_{j}'(\beta) .$$

36

IV. CONCLUSIONS

Possible applications of and extensions to the algorithms developed in Chapter III are discussed in this chapter.

is indicated in Chapter I, the objective of this paper has been to develop a means of assessing the likelihood a threat whose position has previously been estimated lies at a given measured bearing from a local sensor. The procedures were developed with a view towards permitting the user to make comparisons among lines of bearing measured by different sensors or among conflicting bearing information generated by one sensor. The approach chosen has been to estimate the likelihood that a threat lies on bearing & given that the threat is located in an ellipse of specified confidence $p_1 \times 100$ %, that 3 is measured with $p_2 \times 100$ % accuracy, and that the sensor position is measured with $p_3 \times 100$ % accuracy. The algorithm to calculate the likelihood in the cases where the probability distribution of the target can be assumed to be bivariate normal at the time of the bearing measurement has been implemented on the TI-59 calculator. The cases in which this program applies are the following: (1) when the time elapsed since generation of the threat error ellipse is small enough to justify using the original estimate of the ellipse; (2) when threat course and speed are known, in which case the ellipse center is translated from the original position according to the course, speed and elapsed time information;

37

(3) when the threat can be assumed to be moving about in a random manner over a significant region in such a way that the ellipse center remains unchanged, but the x and y variances have increased. When none of these cases hold, but the course is assumed uniformly distributed over $(0^{\circ}, 350^{\circ})$ and speed has a discrete distribution over a finite interval, the threat density at the time late t_L is not a bivariate normal density. The algorithm applicable in this case has not been implemented, but is described in some detail in Chapter III and Appendix B.

Once the appropriate computation has been completed for each of the bearings considered, the results can be used to weight the value of several bearings in refining the threat location estimate provided by the external sensor. Note that, although unlikely, f'(s) may correctly be greater than one. Comparisons using these likelihoods should be made only when the upper and lower bounds on the true bearing fan for each bearing are chosen at the same probability level p_2 and the uncertainty areas for all sensors include the same probability level p_3 . Further, these likelihood levels should be selected so as not to exclude a significant portion of the appropriate density. If p_2 or p_3 are not the same in all cases to be compared, f'(s) must be divided by the applicable value of p_2 or p_3 for each measured bearing s to be considered.

Having established the relative value of available bearing information, the user can allocate weapons or further search effort accordingly. However, the probabilities calculated

are strictly ordinal data and do not define a redistribution of target location probability based on additional information. Further, the threat ellipse does not contain the target with certainty. The power to predict the probability of success of a search or weapons allocation plan based on the priorities established by these procedures is limited by these constraints. In this area in particular further research would be useful.

In situations such as that for which the procedures in this paper have been developed, where a track has not been developed on the target, introduction of unrelated bearing data to a target motion model could impact significantly on the reliability of future position predictions. If there is high confidence in the reliability of the estimate of the threat ellipse provided by the ocean surveillance sensor, the prioritization established herein could be used to process bearing data prior to input to a target motion model. Using a pre-established threshold, only those bearings which coincide with the threat with an acceptable level of likelihood could be used to refine or update a track on the threat.

Desirable enhancements to the algorithms include providing for the instances in which the interval of uncertainty of the target course is known to be less than $(0^\circ, 360^\circ)$. Further, if the circular region of radius R contains the sensor with significantly less than 86% confidence or the assumption of a

39

bivariate normal distribution of sensor location is unsatisfactory, it is left to the user to modify the calculations accordingly.

Ê

The utility of these algorithms would also be improved by implementation on a larger and faster system than the TI-59 calculator.

APPENDIX A. TI-59 PROGRAM VERBAL FLOW AND USER'S INSTRUCTIONS

Part I Step Number Verbal Flow Enter the confidence level p_1 for 000 - 029the threat ellipse. Calculate the value of k for the given p_1 : $k = \sqrt{-2 \ln(1-p_1)}$. 020 - 029Enter the length of the semi-major axis, A. Calculate $\sigma_{\chi} = A/k$. 030 - 052 Enter the length of the semi-major axis, B. Calculate $\sigma_y = B/k$. Calculate B/A, $\sigma_{x}\sigma_{y}$, σ_{x}^{2} and σ_{y}^{2} . 053 - 058 Enter orientation of semi-major axis, 0. 059-063 Enter bearing from sensor to center of threat ellipse, a. Calculate θ-α. 064 - 073Enter distance r from sensor position to center of threat ellipse. Determine rectangular coordinates of sensor position (U,V) from polar coordinates $(-r, \theta - \alpha)$. 074 - 089Store the constants 360, $\sqrt{2\pi}$.

41

Initialize register 35 to 0.

090 - 096	Enter number of standard devia- tions desired for bearing fan, k _g .
097 - 104	Enter standard deviation of bearing error, σ_{β} . Calculate $k_{\beta}\sigma_{\beta}$.
105 - 143	Enter the angular stepsize desired, $\Delta\beta$, for incrementally stepping through (β_{L}, β_{U}) . Calculate $\frac{1}{2}\Delta\beta$. Calculate the largest number n of increments of size $\Delta\beta$ contained in

 $\frac{1}{2}\delta\Delta\beta$.

144 - 146

152 - 154

Initialize counter 01 to 2. Calculations will be made at the midpoint of each interval from $\beta + \frac{1}{2}\Delta\beta$ to $\beta + k_{\beta}\sigma_{\beta}$, then at the midpoint of each interval from $\beta - \frac{1}{2}\Delta\beta$ to $\beta - k_{\beta}\sigma_{\beta}$, and finally at β . Counter 01 indicates whether calculations are complete on both sides of β .

 $k_{\beta}\sigma_{\beta} - \frac{1}{2}\Delta\beta$ degrees. Initialize counter 00 to n+1. Save n+1 in

 $\delta \Delta \beta = k_{\beta}\sigma_{\beta} - \frac{1}{2}\Delta \beta - n\Delta \beta$,

the residual increment. Calculate

register 20. Determine

147 - 151 Enter bearing measured by sensor, β.

Enter standard deviation of sensor position σ .

Enter index of the sensor position to be used for this run.

156 - 157 Coordinates of the sensor position are selected in accordance with run number entered above in Subroutine sin.

158 - 238 Determine whether a bearing β' parallel to either axis is included in the fan (β_L, β_U) . If (β_L, β_U) includes a bearing parallel to the y-axis, use program 1 for Part II. The appropriate program number is displayed in calculator display register. If (β_L, β_U) does not contain a bearing parallel to either axis, use program 1.

239 - 259 Subroutine P/R.

155

260 - 340 Subroutine sin.

Part II, Programs 1 and 2 Step Number Verbal Flow 000 - 003 Initiate 3'. 004 - 007If the last angular increment on this side of β has been considered, go to step 513. Otherwise continue. 008 - 012Decrement counter for angular increment. If counter = 0, go to 021. Otherwise continue. 013 - 020Remove flag to indicate this is not the last angular increment. Recall AB, the input angular stepsize. Go to 029. 021 - 028Set flag to indicate this is the last angular increment on this side. Add one-half the input angular stepsize AB and one-half the residual stepsize OAB: $\frac{1}{2}\Delta\beta + \frac{1}{2}\delta\Delta\beta$. 029 - 030Increment β' by the appropriate stepsize. 031 - 0/5Convert β' to an angle between 0° and 360°. 046 - 051Calculate $\theta - \beta'$. Print $\theta - \beta'$.

44

dell'estate de la company

052 - 064	If $ e-\beta' = 90^\circ$ or $= 270^\circ$, go to 236.
065 - 074	If $ \theta-\beta' = 0^\circ$ or = 180°, go to 075. Otherwise go to 133.
075 - 086	If the absolute value of the y coordinate of sensor position is greater than the length of the semi-minor axis, ε , go to 004. In this case ε' does not intersect the error ellipse. Otherwise continue.
087 - 088	Set flag 2 to indicate that the bearing β ' is parallel to the x-axis.
089 - 111	Calculate the coordinates of the points of intersection of 3' with the threat ellipse. The y-coordi- nates are equal to V, the y-coordinate of sensor position. x-coordinates are determined in Subroutine y^{x} . The points of intersection are symmetric about the y-axis. Thus, $X_{k1} = -X_{k2}$. Store the smaller x value in register 27, the larger in register 28.
112 - 132	Save locations of $X_{k1}^{}$, $X_{k2}^{}$, $Y_{k1}^{}$, $\sigma_{\chi}^{}$, and $\sigma_{\chi}^{}$. Go to 291.
133 - 138	Remove flags 2 and 3 to indicate that $3'$ is not parallel to either the x- or y- axes.

36 A. P.

- 139 145 $m = \tan (\theta - \beta').$
- 146 154 Calculate the y-intercept of 3': c = V - mU.
- 155 176 If $c^2 > A^2m^2 + B^2$, go to 004. In this case, 3' does not intersect the error ellipse. Otherwise continue.

177 - 235 Calculate X_{kl} and X_{k2}, the xcoordinates of the points of intersection of 3' with the ellipse:

$$x_{k1} = \frac{-mc + \frac{B}{A} \sqrt{A^2m^2 + B^2 - c^2}}{\frac{A^2m^2 + B^2}{A^2}}$$
$$x_{k2} = \frac{-mc - \frac{B}{A} \sqrt{A^2m^2 + B^2} - c^2}{\frac{A^2m^2 + B^2}{A^2}}$$

Calculate the y-coordinates of the points of intersection of β with the ellipse, Y_{kl} , Y_{k2} :

 $Y_{kl} = mX_{kl} + c$ $Y_{k2} = mX_{k2} + c$. Go to 299.

236 - 247

If |U|, the absolute value of the x-coordinate of sensor position, is greater than the length of the semi-major axis, A, go to 004. β '

does not intersect the error ellipse in this case. Otherwise continue.

248 - 249 Set flag 3 to indicate that 3' is parallel to the y-axis.

- 250 272 Calculate the coordinates of the points of intersection of 3' with the error ellipse. The xcoordinates are equal to U, the x-coordinate of sensor position. The y-coordinates are determined in Subroutine y^{X} . The points of intersection are symmetric about the x-axis. Thus, $Y_{k1} = -Y_{k2}$. Store the smaller y value in register 29, the larger in 30.
- 273 298 Save the locations of Y_{k2} , Y_{k1} , X_{k1} , σ_Y , σ_X .

299 - 328

Determine the width of the strip around 3', W:

If flag 0 set,

 $W = (d_1 + d_2) \tan(\frac{1}{2} \delta \Delta B),$ Otherwise

 $W = (d_1 + d_2) \tan \frac{1}{2} \Delta B$.

 d_1 and d_2 are the distances from (U,V), the sensor position, to the intersection points (X_{k1}, Y_{k1}) and (X_{k2}, Y_{k2}) , respectively. Distances are calculated in Subroutine log.

Multiply W by $\Delta\beta$ if flag 0 not set. Otherwise, multiply by $\delta\Delta\beta$. Save result in register 37.

329 - 334 If 3' is parallel to either the x- or the y-axis, go to 468. Otherwise continue.

When using program 1:

335 - 380 Express the y-coordinates of the intersection points as standard normal random variables, 2, and 2,:

$$z_{i} = \frac{Y_{ki} - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}{\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}}$$

i = 1, 2.

381 - 391 Sort the values Z_i in descending order. Let Z_2' be the larger value. Z_1' is the smaller.

392 - 401 Calculate $\Rightarrow(Z_2') - \Rightarrow(Z_1')$, the probability that a standard normal random variate lies between Z_1' and Z_2' . 402 - 424

ren diriden ministrikation birlikation in and in andre en and this address of the diride in the state of the

htmas ultimoning at the database

Multiply the results of steps 392-401 by:

$$\frac{1}{\sqrt{\sigma_{v}^{2} + m^{2}\sigma_{x}^{2}}} = \frac{\sigma(\frac{c}{\sqrt{\sigma_{v}^{2} + m^{2}\sigma_{x}^{2}}}) \times m^{1} \times W,$$

where : is the standard normal density function.

The result of the calculations in steps 335-414 is

$$\begin{vmatrix} W & \int f_{X,Y}(\frac{y-c}{m}, y) dy \end{vmatrix}$$

When using program 2:

335 - 372

Express the x-coordinates of the intersection points as standard normal random variables Z₁ and Z₂:

$$z_{i} = \frac{x_{k2}^{2} + \frac{mc_{x}^{2}}{\sqrt{\sigma_{y}^{2} + m^{2}\sigma_{x}^{2}}}}{\frac{\sigma_{x}^{2}}{\sqrt{\sigma_{x}^{2} + m^{2}\sigma_{y}^{2}}}},$$

i = 1, 2.

373 - 383

Sort the values of Z_i in descending order. Let $Z_2' = larger$ value. $Z_1' = smaller$. 384 - 393 Calculate $\Rightarrow(Z_2') - \Rightarrow(Z_1')$, the probability that a standard normal random variate lies between Z_1' and Z_2' .

394 - 413Multiply the results of steps384-393 by:

$$\frac{1}{\sqrt{\sigma_{\rm Y}^{\ 2} + m^2 \sigma_{\rm X}^{\ 2}}} \approx \left(\frac{c}{\sqrt{\sigma_{\rm Y}^{\ 2} + m^2 \sigma_{\rm X}^{\ 2}}}\right) \times \tilde{W},$$

where ; is the standard normal density function.

The result of the calculations in steps 335-413 is

 $\begin{bmatrix} & Y_{k2} \\ W & \int f_{X,Y}(x,mx+c) dx \\ Y_{k1} \end{bmatrix}$

Regardless of which program is in use:

425 - 465Multiply results of previous
calculation by

 $\frac{1}{\sigma_{\beta}} \diamond \left(\frac{3^{"-3}}{\sigma_{\beta}}\right)$ where $\beta^{"} = \frac{\beta^{'}}{\beta^{'}-360^{\circ}}, \frac{\beta^{'}}{\beta^{'}} \geq 180^{\circ}$

and \Rightarrow is the standard normal density.

The result of this calculation is

$$f_{a}(3;3') | W \int f_{X,V}(x,y) dy |$$

466 - 467	Go to 508
468 - 507	Calculate the area under the curve formed by the intersection of S' with $f_{X,Y}(x,y)$. When S' parallels the x-axis this calculation becomes:
	$\frac{1}{\overline{z_Y}} \circ (\frac{V}{\overline{z_Y}}) [\diamond (Z_2) - \diamond (Z_1)] ,$
	where $z_2 = x_{k2}/\sigma_X$ and $z_1 = x_{k1}/\sigma_X$, V is the y-coordinate of the sensor
	position.
	When 3' is parallel to the y-axis,
	the calculation is:
	$\frac{1}{\sigma_{\rm X}} \div (\frac{{\rm U}}{\sigma_{\rm X}}) [\div ({\rm Z}_2) - \div ({\rm Z}_1)] ,$
	where $z_2 = Y_{k2}/z_y$ and $z_1 = Y_{k1}/z_y$, U is the x-coordinate of the sensor
	position.
	Go to 422 to complete calculation
	of $f_{\beta}(3;3') \mid \forall \int f_{X,Y}(x,y) \mid$.
	(Go to 410 in Program 2).
508-512	Accumulate the probability at each
	angular interval. Display result.
513 - 515	If flag l is set go to 558.
	Otherwise continue.
516 500	
516 - 520	If flag 0 is not set, that is if
	the angular increment just con-
	sidered was not the last on this
	side of \hat{z} , go to 004 and continue
•	calculation on same side of 3.
	Otherwise continue.

_

نشه.

-

ī.

I

4

- 521 524 Decrement the counter 01. If counter is now 0 go to 543. In this case, the probabilities have been calcuided on both sides of 3. The calculation at 3 remains to be done. Otherwise continue.
- 525 542 Remove flag 0. Multiply $\Delta \hat{s}$, $\frac{1}{2}\Delta \hat{s}$, and $\frac{1}{2}\hat{s}\Delta \hat{s}$ by -1. Reinitialize counter 00 to n+1. Go to 000 to begin calculation on second side of \hat{s} .
- 543 567 Set flag 01 indicating that calculations on both sides of 3 have been completed. The next iteration will do the calculation at 5' = 5. Remove flag 00. Initialize 5' to 0. Recall 5. Go to 029.
- 558 566 Remove flag 01. Display the accumulated likelihood. STOP

The result of this calculation is approximately $f_j'(\varepsilon)$ with sensor at (U_j, V_j) where j = run number entered in Part I.

567 - 587 Subroutine y^x calculates the points of intersection when s' is parallel to either the x or y axis:

$$Y_{k1} = Y_{k2} = V$$

 $x_{k1} = -A \sqrt{1 - (\frac{U}{3})^2}$
 $x_{k2} = A \sqrt{1 - (\frac{U}{3})^2}$

Parallel to y-axis:

$$x_{k1} = x_{k2} = U$$

 $Y_{k1} = -B \sqrt{1 - (\frac{V}{A})^2}$
 $Y_{k2} = B \sqrt{1 - (\frac{V}{A})^2}$

585 - 610

Subroutine log calculates the distance from sensor position to point of intersection of 3' with the ellipse:

$$d_{i} = \sqrt{(v - x_{ki})^{2} + (v - y_{ki})^{2}}$$

Part III Step Number	Verbal Flow
000 - 012	Enter result of run l. Multiply by 1/3.
013 - 021	Enter result of run 2. Multiply by 1/3.
022 - 029	Enter result of run 3. Multiply by 1/3.
030 - 032	Display likelihood.
033 - 041	If p_2 is the same for all bearings to be compared, enter 1. Go to 042. Otherwise, enter p_2 for this bearing. Divide likelihood by p_2 . Display result.
042 - 050	If p_3 is the same for all bearings to be compared, enter 1 and STOP. Otherwise, enter p_3 for this bearing. Divide likelihood by p_3 . Display result. STOP.

*

- -..

. ******

54

USER'S INSTRUCTIONS

The program to determine the likelihood that the threat lies along bearing β given the threat is in the confidence ellipse, $\beta_T \in (\beta_L, \beta_U)$ and the sensor is within the $p_3 \times 100$ % confidence circle is in three parts. All parts require the use of a printer and the use of the Applied Statistics Library Module. Prior to running, the calculator must be repartitioned:

1. Enter 4

2. Press 2nd OP 17

Part I

1. Read sides 1 and 2 of Part I

2. Read side 4 of Part II either program 1 or program 2. Since program 2 is used more often, unless it is known that the bearing fan (β_L, β_U) contains a bearing parallel to the major axis, recommend using program 2 of Part II.

- 3. Press R.
- Enter p₁, the confidence level of the threat ellipse.
 Press A

5. Enter A, length of the semi-major axis. If data provided is length of the entire major axis, divide by 2 before entering.

Press B.

6. Enter B, length of the semi-minor axis. If data provided is length of entire minor axis, divide by 2 before entering. Press C.

7. Enter θ , the bearing of major axis from North. $0^{\circ} \leq \theta \leq 180^{\circ}$. θ is entered in degrees. Press D.

8. Enter α , the bearing of the threat ellipse center from the estimated sensor position. $0^{\circ} \leq \alpha \leq 360^{\circ}$, in degrees. Press E.

9. Enter r, the range from the estimated sensor position to the center of the threat ellipse. Press 2nd A'.

10. Enter k_{β} , the number of standard deviations desired in one direction from β . The program will construct a fan of equal size on the other side of β . Press 2nd B'.

ll. Enter σ_{β} , the standard deviation of bearing error. Press 2nd C'.

12. Enter $\Delta\beta$, the desired angular stepsize. Press 2nd D'.

13. Enter β , the measured bearing. Press 2nd E'.

14. Enter σ , the standard deviation of sensor position. Press R/S.

15. Enter the number of this run, 1, 2 or 3. When run number = 1, sensor is located at its estimated position (u_0, v_0) . When run number = 2, the location will be $(u_0^+.97\sigma\cos(\theta-\beta-90), v_0^+.97\sigma\sin(\theta-\beta-90))$. When run number = 3, the location will be $(u_0^-.97\sigma\cos(\theta-\beta-90), v_0^-.97\sigma\sin(\theta-\beta-90))$. Press R/S. If program number displayed matches that of the Part II side 4 read in, continue to 16. Otherwise, press 2nd CMS, RST. Read in side 4 of the Part II program which corresponds to the number displayed. Repeat 3 through 15.

16. Press 4 2nd WRITE. Rerecord side 4 of the Part II program read in. This enables data entered in Part I to be transferred to Part II.

Part II

1. Read sides 1, 2, 3 and 4 of Part II Program 1 or 2 as selected by the Part I program.

2. Press RST

3. Press R/S. Values of β_t and $W \int f_{\beta}(\beta;\beta_t) f_{\beta_TRUE}(\beta_t)$ will print alternately. Final result also prints out at end of calculation.

4. Record final result: Likelihood threat lies along bearing β given threat is in $p_1 \times 100$ % ellipse, true bearing is in $p_2 \times 100$ % fan and sensor is at location used in this run. Parts I and II must be completed 3 times (Run numbers 1, 2 and 3) before proceeding to Part III if uncertainty in sensor position is being considered.

Part III

1. Read side 1 of Part I.I.

2. Enter result of run 1. Press A.

3. Enter result of run 2. Press B.

4. Enter result of run 3. Press C.

5. Enter p_2 , confidence level of (β_L, β_U) , if necessary. Otherwise enter 1. Press D.

 Enter p₃ confidence level of sensor position, if necessary. Otherwise, enter 1. Press E.

APPENDIX B. TIME LATE VERBAL FLOW

VERBAL FLOW

1.	Enter p_1 . Determine the value of k: $k = \sqrt{-2 \ln (1 - p_1)}$
2.	Enter A. Determine $\sigma_X^2 = (A/k)^2$
3.	Enter B. Determine $\sigma_{Y}^{2} = (B/k)^{2}$
4.	Enter θ , orientation of major axis
5.	Enter a , bearing from sensor to ellipse center
6.	Enter range r from sensor to ellipse center
7.	Calculate (u_0,v_0) the coordinates of mean sensor

position. $u_0 = -r \cos(\theta - \alpha)$, $v_0 = -r \sin(\theta - \alpha)$

8. Later σ_2 , the standard deviation of bearing error

9. Enter k_{β} , the number of standard deviations to be included in the bearing fan on each side of β .

10. Enter desired angular stepsize, AB

11. Calculate the number of iterations of size $\Delta\beta$ required on each side of β : I = $[(k_{\beta}\sigma_{\beta} - \frac{1}{2}\Delta\beta)/\Delta\beta]$ where $[\cdot]$ means the greatest integer less than or equal to the value within.

12. In general $(k_{\beta}\sigma_{\beta} - \frac{1}{2}\Delta\beta)/\Delta\beta$ is not an integer. Determine the size of the fractional increment:

$$\delta \Delta \beta = ((k_{\beta}\sigma_{\beta} - \frac{1}{2}\Delta\beta)/\Delta\beta - I)\Delta\beta.$$

13. Enter 8, the measured bearing. Let PROB2=0, PROB1=0

14. Enter the time late t_r

15. For each of the discrete threat speeds to be considered, repeat steps 16 to 43. Then go to 44.

16. Enter the target speed s. Let PROB = 0

A CARE AND A CARE

17. Expand the outer limit of the threat ellipse:

Let
$$A' = A + st_L$$

 $B' = B + st_L$

18. Let $\beta^* = \beta$

19. For each of the I increments of size AB repeat steps 20 to 38.

20. Let $\beta' = \beta' + \Delta\beta$

21. Calculate $(\theta - \beta')$. If $|\theta - \beta'| = 0^{\circ}$ or 180°, go to 27. If $|\theta - \beta'| = 90^{\circ}$ or 270°, go to 30

22. Calculate $m = \tan (\theta - \beta')$, the slope of the line of bearing.

23. Calculate c = mU+V, where (U,V) is the sensor location for this iteration. c is the y-intercept of the line of bearing.

24. Calculate $m^2A^2 + B^2 - c^2$. If this quantity is less than zero, the line of bearing 3' does not intersect the threat ellipse. Go to step 20 and process next increment of size $\Delta 3$, if any remain. If all I intervals of size $\Delta 3$ on this side of 3 have been considered go to step 40.

25. Calculate the points of intersection of the line of bearing with the expanded ellipse:

$$X_{1} = \frac{(-mc + (B'/A')) A'^{2}m^{2} + B'^{2} - c^{2}}{A'^{2}m^{2} + B'^{2}} (A'^{2})$$

$$x_{2} = \frac{(-mc - (B'/A')) \sqrt{A'^{2}m^{2} + B'^{2} - c^{2}} (A'^{2})}{A'^{2}m^{2} + B'^{2} + B'^{2}}$$

$$Y_1 = mX_1 + c, \quad Y_2 = mX_2 + c$$

26. Go to 32

27. If |V| > B', the bearing β' parallel to the x-axis does not intersect the threat ellipse. Go to step 20 and process next increment of size $\Delta\beta$ if any remain. If all \cdot I intervals if size $\Delta\beta$ on this side of β have been considered, go to 40.

28. Calculate the points of intersection

$$Y_1 = Y_2 = V$$

 $X_1 = -B' \sqrt{1 - (V^2/B'^2)}$
 $X_2 = B' \sqrt{1 - (V^2/B'^2)}$

29. Go to 32

30. If |U| > A', the bearing 3' parallel to the y-axis does not intersect the threat ellipse. Go to step 20 and process the next increment of size $\Delta\beta$ if any remain. If all I intervals of size $\Delta\beta$ on this side of β have been considered, go to 40.

31. Calculate the points of intersection:

$$\begin{aligned} x_1 &= x_2 &= u \\ y_1 &= -A' \sqrt{1 - (u^2/A'^2)} \\ y_2 &= A' \sqrt{1 - (u^2/A'^2)} \end{aligned}$$

32. Calculate the median width of the strip of the ellipse defined by the angular subinterval under consideration. If the subinterval is of size $\Delta\beta$:

$$W = \frac{d_1 + d_2}{2} (2 \tan \frac{1}{2} \Delta \beta)$$

If the subinterval is of size 648:

$$W = \frac{d_1 + d_2}{2} (2 \tan \frac{1}{2} \delta \Delta \beta)$$

In these expressions d_i is the distance from the sensor to the ith point of intersection, i = 1, 2: $d_i = \sqrt{(U-X_i)^2 + (V-Y_i)^2}$

33. If $|\theta-\beta'| = 0^\circ$ or 180°, go to 36. If $|\theta-\beta'| = 90^\circ$ or 270°, go to 35.

34. Evaluate the target density from Y_1 ' to Y_2 ' along the line y = mx + c:

Let $Y_1' = \min(Y_1, Y_2)$

 $Y_2' = max(Y_1, Y_2)$

\$\$\phi(z) = density function of a standard normal
random variable evaluated at z

$$\mathcal{L} = (m/\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}) \phi(c/\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}})$$

Subdivide the interval (Y_1, Y_2) into n segments of length h. At the midpoint of each segement, Y_i , compute:

$$hK(\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}} / m\sigma_{X}\sigma_{Y}) \phi((y_{j} - \frac{c\sigma_{Y}^{2}}{\sigma_{Y}^{2} + m^{2}\sigma_{X}^{2}}) (\sqrt{\sigma_{Y}^{2} + m^{2}\sigma_{Y}^{2}} / m\sigma_{X}\sigma_{Y}))$$

$$\int_{\sigma_{Y}}^{360} \exp\left[-\frac{1}{2} \left(\frac{(\text{st}_{L})^{2} \cos^{2}(\theta-\psi) - 2\text{st}_{L} Y_{j} \cos(\theta-\psi)}{m^{2} \sigma_{X}^{2}} + \frac{(\text{st}_{L})^{2} \sin^{2}(\theta-\psi) - 2\text{st}_{L} Y_{j} \sin(\theta-\psi)}{\sigma_{Y}^{2}}\right) \frac{d\psi}{360}$$

when the integral must be numerically evaluated. Sum the results over all n segments. Go to 37.

35. Evaluate the target density from Y_1' to Y_2' along the line x = U:

Let $Y_1' = \min(Y_1, Y_2)$ $Y_2' = \max(Y_1, Y_2)$ $\phi(z) = \text{density function of standard normal random}$ variable $K = \frac{1}{\sigma_X} \phi(\frac{U}{\sigma_X})$

Subdivide the interval (Y_1', Y_2') into n segments of length h. At the midpoint of each segment, Y_i , compute:

$$hK \frac{1}{\sigma_{X}} \begin{pmatrix} \varphi_{j} \\ \overline{\gamma_{Y}} \end{pmatrix} \int_{0}^{360} \exp\left[-\frac{1}{2}\left(\frac{(st_{L})^{2}\cos(\theta-\psi) - 2st_{L}U\cos(\theta-\psi)}{\sigma_{X}} + \frac{(st_{L})^{2}\sin^{2}(\theta-\psi) - 2st_{L}y_{j}\sin(\theta-\psi)}{\sigma_{Y}^{2}}\right)\right] \frac{d\psi}{360}$$

where the integral must be numerically evaluated.

Sum the results over all n segments. Go to 37.

36. Evaluate the target density from X_1' to X_2' along the line y = V:

Let
$$X_1' = \min(X_1, X_2)$$

 $X_2' = \max(X_1, X_2)$
 $\varphi(z) = \text{density of standard normal random}$

variable $K = \frac{1}{\sigma_{\rm Y}} \phi(\frac{\rm V}{\sigma_{\rm Y}})$

Subdivide the interval (x_1', x_2') into n segments of length h. At the midpoint of each segment, x_i , compute:

$$hK \frac{1}{\sigma_{X}} (\phi(\frac{x_{j}}{\sigma_{X}})) \int_{0}^{360} \exp\left[-\frac{1}{2}\left(\frac{(st_{L})^{2}\cos(\theta-\psi) - 2st_{L}x_{j}(\cos(\theta-\psi))}{\sigma_{X}^{2}} + \frac{(st_{L})^{2}\sin^{2}(\theta-\psi) - 2st_{L}Vsin(\theta-\psi)}{\sigma_{Y}^{2}}\right)\right] \frac{d\psi}{360}$$

where the integra! must be numerically evaluated. Sum results over all n segments.

37. Multiply the value of the target density just computed by W.

38. Multiply this result by

$$\frac{1}{\sigma_{3}} \ddagger (\frac{\beta'-\beta}{\sigma_{R}})$$

where \$ is the standard normal density function.

When the second second second

39. Let PROB = PROB+ (the results of the calculations in steps 20 through 38 for each if the I subintervals of size $\Delta\beta$).

40. If the fractional interval of size $\delta \Delta \beta$ on this side has been considered go to 41. Otherwise, let $\beta' = \frac{1}{2}\delta \Delta \beta + \frac{1}{2}\Delta \beta$. Repeat calculations 21 through 38 once. Let PROB = PROB+ (the result calculated at this step).

41. If the computations on both sides of β have been computed, go to 42. Otherwise repeat the computations from 18 to 40 on the other side of β by letting $\Delta\beta = -\Delta\beta$, $\delta\Delta\beta = -\delta\Delta\beta$.

42. Let $\beta' = \beta$. Repeat steps 21 through 38 once. Let PROB = PROB+ (the results of this calculation).

43. Let j = the number of discrete threat speeds to be considered. Let PROB1 = PROB1 + P[S=s]PROB. Go to 15.

44. Repeat steps 15 through 43 once with the sensor located at each of three points:

- (1) $(U,V) = (u_0,v_0)$, the mean of the sensor density;
- (2) $(U,V) = (u_0 + .97\sigma\cos(9-\beta-90)),$ $v_0 + .97\sigma\sin(9-\beta-90));$ (3) $(U,V) = (u_0 - .97\cos(9-\beta-90)),$ $v_0 - .97\sin(9-\beta-90));$

where σ is the standard deviation of the sensor density. The value of PROBL calculated at each iteration will be weighted by the approximate probability that the sensor is

located in the region of the sensor error circle represented by the applicable value (U,V). If p_3 is of the order .86 or greater, multiply by 1/3.

45. The value of PROB2 calculated after completion of step 44 is the relative probability that the threat lies along bearing 3 at time t_L , given the threat was in $p_1 \times 100$ % ellipse at time t_0 , β_t is in (β_L, β_U) and the sensor is in a $p_3 \times 100$ % confidence circle.

			CALCULATOR	FRUGRAM			
		-	PART I				
	~				150		
	.	- · ·				· · · · · ·	
201 -	• •						
2.2.2	22				252	9.5	
1.12	25				5.5	- <u>-</u>	
-1 - 2	3 .	-					
-02-		•			1. D +	· · ·	
<u>)</u>	25	Ξ				42 870	
6.52		• • #*			~ e :	•	
	÷	<u> </u>					
d 1	ΰĴ						
003	22				058		
202	1	÷ -			752	<u>∼⊥</u> ⊥	
		-				S	
011	34	-			121	물리 물	
<u>.</u>	11	_ = ~ ~			252	· · · ·	
· · · ·	、T				~_ .	2. 2. 2	
	:-						
214	17	-			<u> </u>	• •••	
1:5	4				0 - 5		
A • 2	<u>ہ</u> ج	. .				11	
						-· -	
•••	÷	÷			- ? .	· · ·	
018	1-				263	37 8 2	
11 - A	2.	= :			∵. <i>⊒</i> ⊃	40.370	
· · · ·	<u> </u>	· · ·					
•	÷	L1_					
931	12	-5			<u>1</u> 1 - 1	11	
	27	: * *			- T-2	4. 372	
						• • • •	
					~~ .	 :-	
1124	2 -						
025	1				_ ~ ₹	40 870	
0.24	: =	•			2	je - E	
		,			-, - -		
24	<u>ت</u> ف	- -				'	
223	•	-			. :		
222	:	5			<u>;</u>		
		-				21 271	
					~~.	· • •	
	•	-			191		
	<u> </u>	272					
• • •	<u>`</u> :						
	• •	525					
11-	17	- <u>-</u> -					
435	_` -	. 🖯			012	71 -	
035	4 - -	221			.3.3 -		
0.27	·	-			0.37	12 377	
0.0		5.			6.20	E E	
0.25	<u> </u>						
039	0÷	11			088	Y: + -	
<u>n4n</u>	43	377			0.50	TS LEL	
ñ · ·	, - -	·			ຄຈ:	17 2 4	I I I I I I I I I I I I I I I I I I I
(;••• ;	<u>.</u>					4 4 	S* /
1 <u>942</u>	22	<u> </u>			4 7 4 4	41 C G	S /
943	3 2	570			943	16 16	<u>ک</u> تر ا
044	5.5				<u>,,</u> ,,,,	21 V.T.	S /
1.40		-			0.3E	. =	<u>.</u>
<u>_</u>							5 X
145	07						2.5
112-	2 3	55-			33-		N. 3
		` . <u>-</u>			alee -	• • • • • •	S.S.
	' -	-				1.1.1	58
0 + 2	33	. 1			U	12 F 2	
						. C.	× +
						\$ ⁷ .0	•
						N 2	
						R 27	
						2) 2)	

LCULATOR PROGRAM

-

and the second second

Les and the state of the state of the state of the large to the base of the state of the 2 Ξ ÷ - . • Ξ -

PIQUE UNE & PURAL LITURE AV LUNG

and to addition of the state of

-

19

P

- 11-0

67

200 00 0 $250 43 PCL$ $201 95 =$ $251 14 202 22 147$ $252 54$ $203 77 65$ $253 22 147$ $204 01 01$ $254 56 187$ $205 93 91$ $256 43 PCL$ $206 32 117$ $256 43 PCL$ $207 45 PCL$ $257 14 14$ $208 30 30$ $259 54 17$ $209 77 65$ $259 54 17$ $210 01 01$ $260 76 L9L$ $211 95 95$ $261 38 S1H$ $212 61 570$ $263 67 51$ $213 01 0.1$ $263 67 51$ $214 93 93$ $264 03 02$ $215 42 970$ $265 40 40$ $215 42 970$ $265 01 2$ $216 30 70$ $266 01 2$ $217 45 PCL$ $267 22 1477$
207 45 PCU 257 14 14 208 30 30 259 54 1 209 77 6E 259 92 PTH 210 01 01 260 76 L91 211 95 95 261 38 S1H 212 61 670 263 67 E 1 213 01 01 263 67 E 1 214 93 93 264 03 02 215 42 970 265 40 40 216 30 20 267 22 1N ¹⁷

R-VINDAR - LOSA

300	75	-
301	ביה	ц.
20.2	<u>.</u>	1 ¹
	= -	•••
202	 	- 13.5
304	3.4	1 U'.
305	54	
306	87	IFF
307	03	02
202	02	03
200		
507	÷ •	۰-
310	44	T "
311	44	Anti
312	13	12
313	53	
314	43	
215	ก็จ	Q
	5-	-
210	0	
51	5	
316	4 3	PCL
319	$\odot 1$	3 L
320	65	••
321	53	•
	3.2	F (1)
200	-7-2	41 1.5 E.
520	± ±	• •
324		
325	43	FCL
326	32	-, -,
327	~ 5	-
229	n.a	4
220	00	r)
2-2		· _ •
0.00		
<u>ं र ।</u>	್ಷಣೆ	5.1
332	54	
333	57	
334	03	ÛΞ
225	63	Ú Ì
202	20	202
000	00	
331	74	
338	44	500
339	13	13
340	92	P.T.H

alesia dinasanitir sina refease. A

1. t 4

THIS PAGE IS REST QUALITY FRAUTURAL

The state of the second s

THIS PAGE IS REST QUALITY PRACTICALLE PROM COLY FORMILIES TO DUO

_					
-		·····	_		• :=
		- ·			
	, *	•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-	· ·			
	1ª_				3
	-				
	11.	L. 110		· · -	· · · ·
	1	- • •		, it:	-
	··- `	•			- · ·
	1 1 1 5	- ° .		ವಿಷಷ	
					· · ·
	ມູບູລ			سر نہ رُ	1 ·* ·*
	കര			. 1 5 7 7	4
	1. T	- *			'- '
	<u>11173</u>			1155	1- T- 1
					·• • • ·
	1,1,1,1,4			1.1.1	
	1 - 5				•~ .
					1- 1-
	1111	ាំ ស		151	<u> </u>
		2			
	122	_ ·		the L	<u>ر</u>
	1 A M			1 m 2	27 2
	· • •	••••••••••••••••••••••••••••••••••••••			
	114			ت ۲۰۰٫۰	τς + ·
		-, .,			- ·
		_1.1 1.1		· • • •	1, 1 i
	1 m.	1 · C		2	1. T C
		·•• ·			5 G .
		•		, i	~~ · _
					- +
		the face of the second se		15 -	
	1.4	C) (1			
					i i i i i i i i i i i i i i i i i i i
	11 2 11			· · · · · ·	1.1
	- La 's'				
	1121				22 TH
	(5 T)	41.1			
	· · · · · · · · · · · · · · · · · · ·	1947 - 1944 - 1944 - 1944 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -		<u> </u>	And to a
	757			- -	1 ² • 1
		•		_	
	!! <u>_</u>			- -	
	555			5 10-	
	U				- ,
	174	1			
				·- · · ·	
	n <u> </u>	E1 .1			
		- 6			
	말 드 다	- <u>(</u>			• = •
	11.212	4.4 - 1 -		2	C)
				•	-
	1 519			4 <u>3</u> 17	•
		· · · ·			
	1 2 4	· · ·		Ξ.	۰
	•	· .			1.5
		•			
				· , ·	-
	1.7				
		1			'a'.
	935			· 1.****	•
	· · · ·	· · · · ·		·`` *	
	1.5			しげき	i i i i i i i i i i i i i i i i i i i
	0.22	5 5 5 T			
	6.51			14.5	
	038	<u>-</u>		112.1	10 ° 11 °
		101 and 101		· · · ·	
	039	4.5 1		- 489	4 61
	010	22 11			
	1120			나면요	1 2 .
	0.01	2.1 1111		:1931	10 F.1
		544.54 A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			-
	<u>114 3</u>	·		· · _ `	<u> </u>
	1	ас			
	Um 1			1 - 1	·•
	1114	1 2 2 1		ПР а ти	• • • •
					5.1 ·
	045			110	1
					-
	1-1-1-1	14 4 M		1.44	. • •
	Ê.	<u>ре,</u> ,		. 15 7	
	* • • • •	- · · ·		41.2	·•,
	ñ.41.	ці —		1122	-
					- •
	1.1.1			14	

70

÷...

	· · 2 27:1 · · ·	:50	36 10
101	i i i i i i i i i i i i i i i i i i i	101	40 201
វ ព ភ	1 1 1	153	13 13
	15 cm	150	22 910
202	+ <u>+</u> + +	ایر ایر از مالک ا	
104	23 02	1.54	
105	7 (CE:E	: 55	43 ROL
		: = C	
105	45	1.00	202 202
107	42 379	157	
103	78 22	:53	32 27
		150	11 000
107	74 T	1.2.1	- TU
110	42 579	100	U.S U.J
* • •	27 27	161	33 /4
110	n: ·	:	65 💠
111			
11:		171	
; : : -	42 672	164	24
115	28 32	145	
		- · - · -	
115	UE _	100	
117	07 7	167	43 KUL
:13	40 CTD	148	04 04
110		124	22.12
117		107	
120	02 2	170	95 =
1.21	09 9	171	42 370
	10 CTC	<u>ر</u> .د. ب	24 34
124	÷≞ syu	· ·	55 7100
123	خان لمانی		<u>ب</u> ند شت
124	05 5	174	77 GE
105	10 670	175	06 39
		<u>,</u>	0.1 0.1
125	30 30		1 <u>.</u>
127	06 6		
129	10 670	:73	32 .: -
- <u></u>			95 E
127	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
130	più é		
131	92 V.S	131	65 .
120	ar sr	22	43 F.L
- 2 -			
134	ခြင်း ခြင်း	10-	75 7
135	03 - 03	185	41 570
1 7 4	00 100	186	27 27
100		107	ů•
13.	85 5.5	10	7- 7
138	02 02	188	/5 -
139	43 RCU	189	53
110	0.1 0.5	190	13 PC!
144		4 7.4	
141	<u>au tha</u>	191	<u>2</u> 4 24
142	42 870	192	65
142	91 74	193	43 Pf4
142	43.575	10.	
144	42 8 2	174	25 25 T
145	35 St	195	54
÷د:	13 P	196	22 141
170		107	41 2111
14.	· · ·	1 . · ·	
148	72 + -	198	1 I
4.19	<u>10 695</u>	199	45 =

THIS PAGE IS BEST QUALITY PRACTICABLE FRAM COLY FUKALSILL TO DDC

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

71
200 201	42 29	er:: 21	
202 203 204	43 03 32		
205	10 14 14	FJL	
207 208 209	34 95 49	= FED	
210 211 212	27 49 20	27 PRD 24	
		RUL	
215 216 217	43 29 43	570 29 80u	
218 219	28 42 20	20 879 20	
220 221 222	30 43 24	901 24	
223 224 225	499 293	5 PD 25 5 PD	
	30 43	5	
115 219 230	30 44 29	94 101 29	
231 232 232	44 36 61		
234 235	02 91	03	
236 237 238	75 43	LoL 1.00 ROL	
239 340 241	12 50 32	1 1	
242 243	43 03	RCL DC	
244 245 246	22 77 00	111 GE 00	
247 243	01 86	iju ETE	
Z	0.0	1.1	

÷

×

011234567899 223555555255 22322222		
261 262	43 33	570 52
263 264 265	94 42 53	570 32
26E 26T	45	36R
268 269	42 30	578 30
370 371	94 43	± 570
	29 03	23 0 0
275	42 20	0 579 52
277 277 272	02 03 05	n le C
279 380	42	34 34
181 282	02 67	=
283 284 397	- <u></u> 	E 19 14
287 286 287	00 42 52	970 970 94
288 289	05 42	5 S70
290 291	24 02	20 2
$\frac{293}{293}$	97 43	s - S - S - S
294 295	31 02	-
296 297 744	יי <u>ו</u> בנ	: 370 : 370
298 299	د : • • • <u>ا</u>	:BF

THIS PAGE IS BEST QUALITY PRACTICABLE MOUNI COLY FUMALISTIED TO UDIG

1977 - P

1. . . C.

72

 $A \cup U$

-1-1-4 G

300 <u>23 LD-</u> 301 42 570 302 37 37 303 02 1 304 03 3 305 42 STC 306 31 31	350 33 114 351 54 352 41 970 353 38 08 354 95 = 355 22 180 356 44 300 357 29 29
308 00 0 309 42 370 310 32 32 311 71 SBR 312 28 LDG 313 44 HUU 314 37 37 315 43 FCL 315 43 FCL 316 15 10 317 32 INM 318 87 IFF 319 06 00 320 03 05	558 22 147 559 44 807 359 40 80 360 80
321 24 24 322 43 RCU 322 21 21 323 21 20 324 50 7AN 325 50 7AN 326 50 7AN 326 50 7AN 327 49 PSD 327 49 PSD 327 49 PSD 328 50 140 328 50 140 328 50 140 329 50 140 339 50 140	
336 36 36 36 337 65 3 338 43 RCL 339 08 03 340 55 4 341 53 7 342 43 RCL 343 08 08 * 344 85 4 344 85 4 345 43 RCL 345 43 RCL 346 43 RCL 346 21 21	нинии и и и и и и и и и и и и и и и и и

2 5 7

ļ

73

400	11 6		450	16 10	
-01	95 <u>-</u>		451		
- 32 102	27) 41		192	τη μ. Π.Τ γ του στι	
_74	<u> </u>		- 5- - 5-		
			455	36 867	
4€ E	55 -		456	19 19	
.407	43 RCL		457		
408 100	14 55 5 50		408 359	04 45	
210	=		-01 460	43 Ft.	
<u>ن</u> ان	36 834		461	16 18	
412	1		462		
-15	11 -				
-1-			수당년 고리트	्र यहाः च	
				61670	
<u> </u>	3.4		4 <u>6</u> 7		
419	85		8	Té Lêy	
-19	43 B.		-69	E7 E8	
220	24 <u>24</u> 50 1 1		U 171		9 1
421	고 또 고 또		172	22 14	CAB
-23	JI PT		473	8	TT.
<u>43</u> 4	27		<u>∠</u>	38	TLAC
-35	55 5				2821
-25 197				74 F27 342 - 24	
 -28	Ę		479		191
2 <u>9</u> 9	ei :		479	SE Ye	ET.
- 37	04 E		- 50		
-31					
133 133	21 ·			75 .	17 X 17 1
232			484	73 P	- C
435	23 3:		485	19 29	
436	75 -		486	36 P24	1 4 1 - 3 2 - 4
43	43 FUL 22 22		407	17 17 19 R	E :
439	54 64 56		489	95 =	nn an star Martin an st
÷40	22 187		490	£5 .	
44	77 GE		491	53	-
443	đa đa		-93		
44] 111	· · · · · · · · · · · · · · · · · · ·		-71 201	18 18 18 18 18 18 18 18 18 18 18 18 18 1	
115	43 주말일		495		
445	14 14		<u> </u>	<u>3</u> 4 34	
-دد	۳ <u>.</u>		497	54	
812				38 F.M	
		•- ·		, , , , , , , , , , , , , , , , , , , 	

BARRY SALES AND ALL AND A

÷.

All Schulzenskieler

5.50	•••	
		•
=,7	=, =,	-
		- -
⊃J∠ –	· · ·	'-
=		•.
793		
et al constantes de la constante	<u> </u>	-
	- 7	-
575	<u> </u>	C T 71
		·2 _1
508	<u>0</u> :	<u>آ</u> ث
597	22	
=		, -
798 -	· '2'	
ana	~ ~	
JU 7	:	14 E.
5:0	4.1	Crimt .
		<u> </u>
515	35	्व
	- 1	221
	<u> </u>	_ ** s*
= • •		
210	÷	• <u>_</u>
=, • =,	- <u>-</u>	-
		•
5;;	2.2	- + j · ·
5,	87	TEE
	÷.	
513	0.0	
517	U:J	1212 1
ອາກ		
020	10 ÷	
= 0 4	2.2	T 1 1 1 1
		- 11
502		_n⊆
مت مد ال	-	40 - C
522		C 1
	2.2	÷. ·
524	22	÷
		*
520	22	_11''
F 7 3	~ 2	
225		-2 T
		- ∙ ,
-' -		
5,22	, T. Y	-
	·- •	-
F 74		- -
	• _	
o su		
= -, -		
23.	15	- :
= 7 1	4 <u>5</u>	z : ·
يت الله الله		1
F, D, D	- 1 - Q	_
	÷ •	-
독극소		PC-
020	21	
=	· ·	ment.
100		Regio
527	20	2.5
1.3 1	<u> </u>	
538	42	ettin –
539	nn-	00
540	61	G.U
= 4 4	0.0	
141	ູບູ	UPJ
512	6.6	QC.
_ ÷ ÷ _	02	1.1
543	72	1 80
2 T 2		
-11	국 육	~
	86	37F
· · · · ·	ΠĪ	U1
	<u> </u>	• • •
.; -÷	÷÷	11
510	02	275
<u>-</u>	00	
540	าก	, în

	1000000-000000000000000000000000000000	
	10111100011010110101010101010101010101	
0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	0 ~ 0 ~ 4 ~ 10 ~ 10 0 0 ~ 10 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0	REPORT FOR THE PROPERTY OF THE

THIS FACK IS BEST QUALITY FRACTICABLE

75

600	53	
201	73	E 🤇 –
eQ_	32	31
± 0.3	75	-
504	43	FCL
205	13	
606	54	
607	33	<u>:</u> {2
608	54	
509	34	
 610	92	F"H

ت<u>ا بور</u> ...

1.5

÷.

....

1, 10, 11, 11,

Ŧ

1

AND SPACE AND A LOCAL AND A STATE AND A ST

	PART II	PROGRAM_2	2		
000 ±3 7 1			Q50	95 =	
001 71			051	99 PR1	
			052	43 918	
102 +2 P 4			053		
093 23 21			050		
004 87 179			0.24		
365 69 20			100		
604 65 25			J55	09 8	
007 12 13			057	00 0	
000 27 141			058	67 E)	
000 · 11 · 1			659	35 1 11	
			950	02 2	
010 00 00			643		
011 00 00			001	čo o	
012 31 1			000 att		唐 、
013 22 IV					A A
614 8A 3 F			00-		ਤੋਂ 1
			065	60 Ú	
			06E	E7 E)	A C
015 40 REE 015 17 80			067	78 I-	87 1
			063	С. ⁻	ి దో
018 61 G C			0000 060	02 9	24
019 00 00			007	00 V 00 U	Ц Х Ц
020 29 29	ł		0:0	00 0 33 700	8 J
021 86 STF	•		U/1	32 147	12
072 00 99			072	. El	277
022 62 50			073	ði 01	N 5
			07÷	33 33	12 ²⁴
005 05 L	-		075	76 191	540
			076	78 I-	S F
U25 42 811				12 51	14 2
027 21 3.			0, 570		ह दु
028 25 =			19. Q 576		
029 44 6月1	•		0.14		
nan 23 21			080	· · · ·	
at 13 FT			081	43 R.C.	
	•		032	<u> </u>	
سی شرخ کولیا معالیات میں مرتقی			083	21 IN''	
민준은 국무 등을	1		032		
U34 23 C.			635	00 DO	
035 22 141	•		000		
036 49 PEI)		200		
037 23 23	3		U8. 500	85 011 01	
038 65 :			088	02 02	
039 48 FU	2		083	43 RCL	
040 23 20			090	13 13	
	- 1		091	42 STC	
041 22 10	_		092	29 29	
042 07 144			nas	4 5 0	
043 95 =	_		000	10 23	
044 42 875]		074 005	00 00 00 0	
045 23 23			090	UL L Sc S	
046 °	-		195	<u>u-</u>	
347 91 -			097	42 STO	
042 43 P.C			098	31 2	
040 40 TV			099	04 4	
- <u>949</u> 11 1				÷ ·	

h. 1861..

Å

于在中华国际

-, Ì #

and the second states and the second

- -

Tavo	
ないこれ	
	-
201E)	
5. 7 7 1.2 1.4	
5400 1974 2	
THI S	

hr:

	READ READ READ READ READ READ READ READ
00400040000000000000000000000000000000	
- 05 97 4 5 8 8 4 5 8 4 9 4 7 5 - 15 4 9 5 7 5 4 9 6 4 8 5 9 4 9 6	

法有

£ 77-

J.

- <u>-</u> - -

	•		
250	13	on:	
	7:		
301	1.1	1	
252	43	370	
350	2 -		
	<u> </u>		
204	÷ _		
255	-23		
255	_ <u>∩</u> ≎	•:	
200	3-	=	
<u> </u>	U -		
258	43	373	E 1
259	51	2	
220	6.2	Ξ.	3
		-	: : : : : : : : : : : : : : : : : : :
161 -	<u> </u>	5 4	ă
353	-32	31	2
14 P	3.1	<u>.</u>	S re
		· · · · · · · · · · · · · · · · · · ·	13
125	÷-		32
265	-31	3.5	23
266	71		<u>स</u> स
227	. =	•	2 3
17	<u></u>	مر مو مر	83
208	43	5 G	చి క
269	-30	30	61
220	43	÷	6.7
		et n	હે રુ
<u> </u>		2 <u>9</u>	SI
272	-29	29	ਜੋ ਤੋ
273	-03		r =
	- ถือ	. . ,	
2 D	44	1 3	
276	-30	Ξ.	
277	63	,- '	
She	50	-	
- 7	÷	2 1	
230	- 29	·	
281	- 22		
202		-	
	·	,	
432	42	1	
284	32		
235	06	ţ.	
284	3.2	с ⁻ п	
		نۍ د. مرت	
10. 10.	32	<u> </u>	
288	05	5	
289	42	STO	
ົ່ວຈັກ	22	ੇ ਹ <u>ੋ</u>	
2.0	50		
271	민골	ć.	
292	67	-1	
293	33	STI	
292	2.	- +•	
107	2.5	14 - 14 14	
- 70	02	-	
296	03	ς.	
29-	43		
202		- <u>-</u>	
272	<u> </u>		
_ 22	• 1	· · · ·	

7	۵
,	7

-

= PPD 21

PRD 28

30 801 24

993 25

LSL

FOL FOL INT FOL

<u>:</u>:::: ιςε

0001 577

 $\bigcup_{i=1}^{n}$

2436097341534027

,249

34

1040404040404040404044040404

10

hisanines -

Ξ

. . . .

THIS PAGE IS BEJT QUALITY FRACTICABLE FION COL & CALCULATION TO DO

- - - - -

· <u>:</u>___ -<u>..</u> 55 -= ...

-5 C

.

Ľ, . .

- 20r shi n

> : ---् मिरी<u>म</u> मुम्ब

> > 80

100	22	• •			
	Ξ.			÷	
	2 -			-	
_ ? ?	54			-	
55	5	<u>.</u>	4 <u>5</u> 2 42 4	- - .	
-12	•		.52 * 7	-	
ئړ ت	1.7	•		•	
	•	÷.			
	÷÷		145 (- .	
	22	-			
<u></u>	43	F.1			
				-	
		-	<u>.</u>		
109	34	•			4
113	55		-107 of		<u> </u>
		-		•	え
	÷	÷ .			្ទ
÷10	27		+01 10		5
	. =	-	482 55		
~ >	ε.			-	*
- <u></u>	- 53	14]?		•••	్ ల
: • =				•	្រភ្
			245 PF	Ξ	22
21t	5 C	• • •			54
÷: -		1409		- · -	ର କ
		1172	467 77	12	~ 3
-	5.5			5	\$ 2
- <u>-</u>		HL.			
	20	Ht.	469 61	ະປ	25
777			1 c - c - c - c - c - c - c - c - c - c	26.2	2, 2,
		14.35	· · · · · · · · · · · · · · · · · · ·	<u> </u>	5 <u>*</u>
1 77	43	HGC	- 1 2 P	- 7	<u>a</u> 3
		1170	472 22 1	, 1 , 1	5
	- 7 2		177 41 5		జే కే
434		29°			<u> </u>
225	4.3	4774		1	
-25	Ξ.				
±27	50				
	= >			-	
				: .	
- 관련					
220	• 1	-			
	12		190 - Ex P	: , 1	
· · ·					
-32		•••		•	
211	e 5			C	
7.1		-	110 TE	-	
- <u>-</u> -	· • .	· •		-	
그 것 턱					
		-	425 33		
¥90	-	_	19L I. I.		
437	- 43	7. <u> </u>		-	
233	•••				
	5.		433 12	£	
	<u> </u>		-20 es	_	
ະະວ	- 22	- Itt''	*97 74 	-	
.1.1.1			290 65		
	• -	 -	231 52		
	1 ÷	•.'		D .	
440	43				
			493 34	.	
	-		101 ST		
		÷ .			
115	• ±				
		. =	1000 NC		
				-	
443	- 65			. .	
		τ	498 35		
		• • •	293 (2	-	
			T14 *	-	

a last a state of the second second

TAN INTERACTION

÷ 1.114

81

012345678901234	A 0140LEMSTEP1 VF0004V21 VF0 10307400000L F1VF0 A 0140LEMSTEP1 VF0004V21 VF0 10307400000L F1VF0 115040LESSEP105HF0004V21 VF0 1030507400000L F1VF0 115040LESSEP105HF0004V21 VF0 1030507400000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000L F1VF0 115040LESSEP105HF0004V21 VF0 1030507400000L F1VF0 115040LESSEP105HF0004V21 VF0 103050740000000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000L F1VF0 115040LESSEP105HF0004V21 VF0 10305074000000000000000000000000000000000				012345678901234567890123456789012345678901234567890423456789042345678904234567890123456789001234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234556789000000000000000000000000000000000000	PDGU2D09U "FTUST FU" 11141 - 40 - 40 - 43 - 840 CS 2002772804359165 - 3153315334453342683331532434 2434260277280439974550757357357353542683331532431 2434260277280439974550757357357353542683331532431 24342602772804399745507573573573535426833342683331532431	THIS PAGE IS BEST QUALITY FRAGILIAN
---	--	--	--	--	--	---	-------------------------------------

82

and the state of the

600	53	
601	73	Fr[
602	33	32
603	75	-
604	43	P C.
o05	13	3.3
606	54	
507	33	5.13 5.1
608	54	•
609	34	£11
610	92	57H

のないなどのないで、ないないないないで、ないないないにある。

Ma 10 11 .

THIS PAGE IS BEST QUALITY FRACTICIAL

ഫ്റ	•••	1.7.
000 001		<u>د</u>
QŲ.	4 -	::
- 200	÷ 1	
003	53	
005		-
ໂປິ⇔	1.1.1. 	
005	3,5	
ាំំំង 👘	54	
0.0m	12	<u>, 10</u>
001		
008	ហូក	• • • •
009	35	-
1111	3.2	570
1124	2.	
Ú11	Li .	- 01
012	<u>્</u> ્	P 19
013	-	1.8.
i de la cella d La cella de la c		<u>с</u>
014	1 -	D
015	6	
O1E	43	F L
~.~		01
21.	0.0	
018	ن د.	
កុះចុ	44	SUM
0.00		0.1
020	<u>U1</u>	· · ·
021	-91	R. 5
11.2.3	75	1.91.
02.2	1.2	<u> </u>
037		
025	-43	PÚL
0.24	ិមិ	- 1 I
010		
U2.		·
0.38	- 14	<u> </u>
0.24	n :	. T -
- 19-00 - 19-00		
730		• • • •
031	1	
1137	3.5	FF-
	÷.;	1.01
155	'2	·
034	14	
0.35		2 1112
0.52		4 PM-1
0.00	· · · · ·	
US i	- U :	
038	4.	S RCL
0.29	n.	11
0.00		- 00 -
040	~	
041	ċ.	
042		S LBL
(14 j	1	J E.
- <u>1</u> 47	- 3,	2 HP
045	4	9 FR1
	n	ร บ้
1.14 G	Q	· · ·
047°	4	
048	Ū	i 0.
0.10	à	a ppr
1999 (P		· · ·
124		7 . 3

- 26

×.,

1999 A. A. A.

Scholland and the London Sci

É

PART III

2

- Nous

THIS PALE LUTE LUTE I RAUTINE

-

84

and the second second second

LIST OF REFERENCES

- Naval Postgraduate School Technical Report NPS55Fo-75041, Some Notes on Search, Detection and Localization Modeling, by R. N. Forrest, p. 28-30, April 1975.
- Operations Evaluation Group Report 51, Antisubmarine Warfare in World War II, by C. M. Sternhell and A. M. Thorndike, p. 145, 10 April 1946.
- 3. Barr, D. R. and Zehna, P. W., Probability, p. 254, Wadsworth, 1971.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
4.	Captain Wayne P. Hughes, USN, Code 55Hl Department of Operations Research Naval Postgraduate School Monterey, California 93940		2
5.	Assistant Chief of Staff for Tactical Development and Evaluation Commander Second Fleet Code N7 CINCLANTFLT Compound Box 100 Norfolk, Virginia 23511		2
6.	Mr. C. Sturdevant Science Advisor Commander Third Fleet Pearl Harbor, Hawaii 96860		1
7.	Dr. E. Whitman Science Advisor Commander Sixth Fleet FPO New York 09501		1
8.	Mr. D. Marsh Science Advisor Commander Seventh Fleet FPO San Francisco 96601		1
9.	Dr. L. Wiener, Code 7932 Naval Research Laboratory Washington, D.C. 20375		1
10.	Dr. Z.S. Mikiel, Code 831 Naval Ocean Systems Center San Diego, California 92152		1

11. LCDR Patricia A. Tracey, USN 291 Spring Branch Drive Gainesville, Virginia 22065

1