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ABSTRACT

The problem of determining whether a line of bearing

measured by a local surface-based sensor coincides with a

threat whose position has been previously estimated by an

ocean surveillance sensor is addressed. Uncertainties in

the position estimate of the threat, in the bearing error

and in the position estimate of the sensor are considered

in measuring the probability that the threat lies on a given

bearing from the sensor. A TI-59 calculator program is

developed which calculates this likelihood when the threat

location density can be assumed to be bivariate normal.

Computations required when significant time has elapsed

since the original estimate of threat location when the den-

sity can no longer be considered bivariate normal are

discussed.
W
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1. INTRODUCTION

As long range surface launched weapons systems continue

to be introduced into the fleet, the operational commander

is increasingly faced with the prob'em of being able to

launch weapons at targets located beyond the horizon.

Successful employment of such weapons is dependenc not only

on the ability to detect, classify and localize targets at

considerable distances, but also on the ability to distinguish

the true target from a potentially larger field of false

targets. While long range ocean surveillance sensors may be

of assistance in the identification and localization of tar-

aets, the information provided may not be refined sufficiently

to permit effective targeting of long range weapons on that

basis alone. The on-scene commander must in general rely on

additional data on target location gathered locally and close

to the time of weapons launch for accurate targeting. Thus,

he must still be able to detect and track the desired target

and be able to distinguish it from other targets within

range of his sensors.

The procedures developed in this paper are designed to be

of assistance in addressing the last of these problems. They

are applicable when the information available is an error

ellipse around a threat location estimated by an ocean sur-

veillance sensor and bearings only data generated by a local

surface-based sensor. The question of whether a target
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detected by the local sensor is the same as that whose

estimated position was provided by an external sensor can

only be addressed if information is available on the loca-

tions and tracks of all possible targets within range of the

PEP local sensor. Since such data is generally not available,

this paper does not attempt to answer that question, but

rather develops a method by which bearing information from

different sensors can be compared as to the likelihood of

each bearing being associated with the threat identified

previously. It is envisioned that these likelihoods can

be then used to induce an ordering among bearing data gathered

by different sensors or, conceivably, conflicting data

gathered by one sensor. The ordering would be based on the

likelihood that each bearing will contribute to refining the

original estimate of the location of the target of interest.

This information could be applied in a number of ways: as

a guide to allocation of more capable sensor resources for

purposes of obtaining targeting information; as a guide for

allocation of weapons against more than one threat; as a

means of pre-processing data before entering it into a target

motion model, thereby reducing the chance of introducing

unrelated data.

To determine the likelihood that a given Une of bearing

and the threat coincide, consideration was give: to the

uncertainties inherent in estimation of target position,

in the measurement of bearings by a particular sensor and

in estimation of sensor location. It is assumed that at some

8



time t, an ocean surveillance sensor detects a threat whose

position is estimated to be within an elliptical region with

px 100% certainty. The estimated position data are received

and converted by the on-scene commander into a probability

distribution described by a truncated bivariate normal density

function.

It is further assumed t-hat the standard error a charac-

teristic of the local sensor is known. The sensor bearing a

with bearing error c- is then projected from the sensor

position through the threat density function.

Since sensor position relative to the target may itself

be subject to navigation error, the uncertainty is introduced

as a truncated circular bivariate normal distribution centered

at location (uov o ) with standard deviation C.

A TI-59 calculator program is developed which estimates

the likelihood that the threat identified by an external

sensor lies along bearing 5, given the threat distribution,

the bearing error, and sensor position distribution relative

to the threat.

The theoretical basis for this calculation is presented

in Chapter Ii. The algorithms used in designing the calcu-

lator program are described in Chapter III. A program listing

and verbal flow are provided in Appetdix A along with instruc-

tions for the user. Appendix B contains a verbal flow of a

program designed for use when considerable time has elapsed

since the initial estimate of the location of a moving

target.

9



ii. THEu.ETICAL BASES

The general approach to determining the likelihood that

a measured line of bearing S is the true bearing from the

sensor to the threat identified and localized by an external

sensor is discussed in this chapter. Calculations rtuM red

when using threat position information both as initially

generated by the external sensor at time zero, t0 , and as

distorted to account for an intervening time late, " are

discussed. Uncertainties in bearing measurement and sensor

position are included.

Initially, assume that sensor position is known with

certainty. Let a3T be the true bearing of the threat from the

sensor. Since threat location is uncertain, s, is a random

quantity with probability density function f. TRI)M Let

f0a; aT)ds be the probability that the errors in bearing

measurement are such as to give rise to a bear inc on the

threat in the interval dS about the observed value 3 when

the true bearing is a,. Then the likelihood of observina a

bearing - is:

f'(a) = J fjs ;aT) f ( T }dBTn 0 ()

all T T TRUE T

The density f (T) is determined by the probability
TRUE

density function of threat location at time t, f (x,y;t).

-I 0

---



r Given the probability density function of threat location

at time t and assmiina that bearing errors are normally dis-

tributed with mean zero, consideration is limited to the
proai~ity that the observed bearing is the true bearing

of the threat, given the threat is contained in a planar

region E and the true bearing ,T is in an interval about B

with unner and lower bounds U and -" The region E is

selected to be the min mnr'i area planar region which contains

the threat with a specified high probability p,_ The inter-

val (3 pLU) is selected so that, for all the possible values

of aT contained in the interval, a is within an interval of

specified high probability p2 around S, The fan (E

is srnetric about S so ti:at it represents the minimin area

region which reets the above criterion. The likelihood of

observing S when the threat is -n £ and is in - 3Ld), is
deterined by integrating expression (11 above, over a region

a cfe-Ted in the manner of the shaded area of Figuze l(a).I f sensor nosition is not certain, assume that it is

distributed in accordance with a circu1ar bivariate normal

distribution f u V). Again, consideration is limited to

determining the likelihood oF observing a bearing a given

that the threat is contained in a planar region, E, S- is in

',7 } , and the sensor is contained -n a planar region C.

- The reaion C is selected as the minim'= area planar region

which contains the sensor with a high probability P3 The

region of E over which f' (3) is evaluated expands as te

shaded region of Ficure i(b).

i
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Since the measurement errors involved in estimating the

threat position, the sensor position and the bearing angle

arise from different measurement procedures, it is reason-

able to assume that errors are independent. The probability

densities required to perform the above calculations can be

estimated as follows.

At time t an ocean surveillance sensor estimates the
0

position of the threat to be located within an elliptical

area characterized by the parameter set E = {X,Y,e,A,B} with

confidence p1 x 100%. The elements of the parameter set E

are respectively: X the latitude of the estimated threat

position, Y the longitude of estimated threat position,

e the orientation of the major axis from true North, A the

length of the semi-major axis, and B the length of the semi-

minor axis. Since the measurement errors in determining

threat position are generally assumed to be normally distributed,

the ellipse characterized by E represents the minimal area

Pl x 100% confidence region about the mean (X,Y). Treating

this ellipse as the p1 probability region of a bivariate

normal distribution, a density function for the threat posi-

tion at time to can be estimated. For convenience, locate

the origin of a rectangular coordinate system at the center

of the: ellipse, (X,Y), with positive x-axis located along

the major-axis of the ellipse at a bearing 8 from true North.

Assume a flat earth in the region of interest. Let to = 0.

The mean of the threat position density f Xy(xy;O) is then

the point (0,0). The variances in the X and Y directions can

13



be derived from the fact that the region with minimal area

which contains the threat with probability p1 is a k-sigma

ellipse where k is determined from the relationship:

2
P[threat located in k-sigma ellipse] 1 - e / 2

Thus,

2 2x = (A/k)

and

2 2y = (B/k)

where

k = V-2 ln(l-Pl)

X and Y are assumed to be independent.

If the course and speed of the threat are known with

certainty to be , and s respectively, the probability density

of the threat position at time late tL can be shown to be

again a bivariate normal with mean (stLcos(8-,P),stLsin(8-k))
and variances ax2 Cy2  The p, probability region of the

density at time t would then be an ellipse congruent to that

characterized by the set E above but centered at the point

(stLcos(e-, ),stLsin(e-)) (Figure 2) [Ref. 1].

14
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In some cases, the motion of a submarine on patrol in a

large area can be characterized, when tL is large, by an

expansion of the probability area with time at a rate D.

The result in such a case is that f xy (x,y;tL) is still

bivariate normal with mean (0,0) but with variances ax +DtX L

UR and y2 +DtL.

When the motion of the threat cannot be described in the

above manner, and the course and speed are not known, but

assumed to be distributed according to the densities f (:)

and fs(s), determining the probability density fx,y(X,y;t)

is a considerably more complex problem. Let (xo(s,p),yo(s,P))

be the coordinates of the point at which the threat would

have to be located at time zero in order to reach the point

(xLY L ) at time tL if the threat speed were s and course .

(Figure 3). Then,

S360
fx,Y (x'y;t L) = f f fx Y [xo(s'P)'Yo(s');to]0 0

f fT ( , ) f S ( s ) dds [Ref. 1]

This density is no longer normal. In the special case when2 2
A B, i.e., aX  = Uy has a uniform distribution over

the interval (00,3600) and S is known with certainty, as

shown in Reference 2, the density changes with time as in

Figure 4.

16
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FIGURE 4. TIME LATE THREAT DENSITY, SPEED KNOWN
COURSE UNIFORM (00,3600)
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The distribution of the bearing error measured by the

local sensor can be estimated if the standard error of the

sensor, a., is known. The bearing error is then assumed to
~2

be normally distributed with mean zero and 
variance 2.

Assume that the estimated sensor location (U ,vo ) is

accurate to within R nautical miles with P3 x 100% confidence.

The density fu'v(u,v) of sensor location can be assumed to be

a circular bivariate normal with mean (Uo,vo ) and variance

2 = R 2/k2. The value of k is determined from the relation-

ship:

k2/
P((u,v) contained in k-sigma region] = 1 - e / 2

where the probability on the left is P3 in this cas

Since the evaluation of f'(3) considering sensor position

density and bearing error density does not generalize to a

closed form, algorithms are developed in the remainder of this

paper for estimation of the probability (likelihood) that the threat

identified by an external sensor lies on a line of bearing

measured by a local sensor given that the threat is in region

E, the sensor is in region C and the true line of bearing

I lies within (aL, U)-

I.9/1 _ _1



'II. ALGORITHMS

As indicated in the previous chapter, the variety of

geometrical situations which can arise depending on the

location of the sensor relative to the estimated threat loca-

tion precluded development of a generalized analytical pro-

cedure. Rather, algorithms are developed in this paper for

numerically evaluating f'(S). The procedures applicable to

a bivariate normal threat location density have been imple-

mented on a TI-59 calculator. Appendix A contains a listing

of that program. The calculations required when the time

late threat location density is no longer normal exceeded

the available program capacity of the TI-59 and therefore

have not been implemented. A detailed verbal flow is provided

at Appendix B for future implementation on a larger machine.

The algorithms used in both situations are described in this

chapter.

A. BIVARIATE NORMAL THREAT LOCATION DENSITY

This case includes situations (1) where the time elapsed

since generation of the initial error ellipse by the oceanIsurveillance sensor is negligible, (2) where the motion of
the threat can be assumed to be random in the manner described

above, and (3) where course and speed of the threat areI assumed to be known with certainty. With appropriate modi-

D fications to the input data, all three of these situations

Ican be addressed using the program contained in Appendix A.

20



In situation (1) the data entered are the parameters of the

ellipse as generated by the ocean surveillance sensor. In

(2), the location and orientation from North of the ellipse

is the same as originally generated, but the size of the

ellipse expands at some constant rate of area per unit time

which must be estimated by the user. This rate D, times the

elapsed time, t, yields the factor which must be added to

the seni-major and semi-minor axes of the original ellipse.

That is, if the original error ellipse is a p1 x 100% confi-

dence ellipse, the semi-major and semi-minor axes of the

diffused ellipse will be input as A' and B' respectively:

A' = -fA + (-2 ln(l-pl))Dt

B' = _B2 + (-2 ln(l-pl))DtL

In situation (3) the dimensions and orientation of the time

late ellipse are the same as those of the original error

ellipse, but the center of the ellipse is displaced from

its original position by the known velocity times elapsed

time. The updated position of the error ellipse is treated

as the origin of the rectangular coordinate system for this

situation and all linear measurements are made relative to

this system. All angular measurements are made from true

North.

Estimation of the likelihood that the threat lies on a

bearing from the local sensor given that the threat is located

21



in a p, x 100% confidence ellipse and the true bearing lies

within the bounds 08L, U) with confidence p, x 100% proceeds

as follows:

1. Estimate parameters of the bivariate normal density
C2 2

X, y(x,y) of threat location: vX =Y 0, aX , ay

2. Determine 5L and aU such that an interval of length

2k 8a centered on either aL or 5 would contain 8, theaa U
measured bearing, with probability 2* = -

-- 2'

3. Determine sensor location coordinates relative to

the origin of the threat ellipse.

4. Subdivide the angular interval (0L, U) into 2n sub-

intervals. Each subinterval k intersects the ellipse in a

strip with average width Wk which cc.cresponds to At"

5. At the midpoint of each subinterval k determine the

equation of the line through the sensor position at the true

bearing 3k from North.

6. Let the equation of the line of bearing be X = --I. m
Then the plane perpendicular to the xy-plane which contains

this line intersects the bivariate normal threat density in

a curve whose equation is
2 2

g M a X  a y(2g(y) = 2=XXe (2)

found by making the substitution X = Y-c in the density
m

function fxy(x,y). It will prove convenient to expand the

right side of (2) as follows [Ref. 3]:

22
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a ag( ) _ M e (3)
4V2riay +m a x2 2 + 2 2!, -- 2 x Cay 2

2  2 2 2' 2 2 2 )(y- 2 2 )

la 2+M2ax m ax ay Oy +Ia x GYrn
For computational purposes, assume that the width Wk

of the region of the ellipse cut out by the angular subinter-

val around ak will be nearly constant through the ellipse.

Let the points of intersection of the line of bearing 8 k
with the threat ellipse be (Xkl,Ykl and (X 2 ,Yk 2 ). Then

approximate the volume of the normal density over this region

E. by the absolute value of the product of the area under the

curve g between Ykl and Yk2 and Wk (Figure 5). Observe that

the term in brackets in equation (3) above is the density

function of a univariate normal random variable with mean

2

2 2  2
aY + M°X

and variance

m x 0Y
2 2, 2"

ay + m ax

The term preceding the brackets in (3) is the slope of the

line of bearing, m, times the density of a univariate normal

random variable with mean zero and variance a 2+ m2 ax 2

23
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evaluated at c. Thus, evaluating the expression

yk2
*W. 1 (v) dv;

klU

is equivalent to the computation

! c
Wkrn( 1 )H(Z 2 ) -(Z'))

2 + 2 + m2 zx
Y Y X

where

C2 F 2y2 m2
Zi = (2 Y2  2 m x

i Y - _X

for i 1,2, is -e P[Z < z] when Zis a standard -normal

random variable, and ; is the density fun-.ion of a standard

normal random variable.

If the substitution Y = mX c vere made in t"el dansitv

f I-( ,-. an analogous situation would arise w--it the limits

Or the intearaton beina x" -and .

7. if the value of the densit - under the bivariate

normal curve over the reaion of the ellipse def-ined by the

subinterval ask is weighted by the probability of observing

a bearing error (S - ) the result is the probability of

observing the bearing of the threat as S when the true threat

location is in the segment of the ellipse defined by ASk.

This probability is approximated as follows:

25
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k Yk XY (Xmy~y 0

ill l

Since the bearing error is assumed normally distributed with

mean zero and variance 2 the value of f (;sk) can be

determined by the expression

°8 ( 8

where € is as above the density function of a standard

normal random variable.

8.

f(s) = f fa (5;t) fa (at) dat
allSt 8 t TRUE

is approximated by

2n Yk2,7 1 Wk f fX (Z-C,y) dy~lf(;Sk=1 Y k1

The value of the sum is determined by repeating steps

A.6 and A.7 above at the midpoints of each of the 2n sub-

intervals defined in step A.4 and summing the results of

each of these calculations. Obviously, the finer the sub-

divisic.L of (8Ls8U), the more accurate will be the estimate

of the likelihood, but also the longer the calculation will

take.

26
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B. SENSOR POSITION UNCERTAINTY

The result of the above calculation will be the likeli-

hood f'(a) that the threat lies along the bearing measured

by the sensor given that the threat is located within the

threat ellipse and the true bearing is within the interval

(aLOU) and the sensor is at the position used to perform

the calculation. We next will introduce additional calcu-

lations that are required to account for the fact that the

sensor position is not known with certainty.

1. If the position of the sensor is estimated as being

within R nautical miles of (uo,vo), its assumed coordinates

in the xy-system, with p3 x 100% confidence, estimate the

parameters of the sensor location density fu,v(UV) with
2

mean zero and variance a 2 mean (UIVo), variance,

2 2o = R /(-2 ln(l -p 3)) in threat centered coordinates.

2. The bearing measured by the sensor is 5 regardless

of the sensor location. Assume that the area of intersection

of the angular wedge (aLS0U) and the threat ellipse does not

change significantly as the sensor position is moved along

the line of bearing a. Then the effect of the bivariate

normal distribution of sensor location can be approximated

by considering only the univariate normal density along a

line through (uo,v O ) perpendicular to 0. Repeat the calcu-

lations in steps A.3 through A.8 above with the sensor located

at each of the three points (uo,vo), (uo+.97acos(9-S-90),

v0+.97asin(e-s-90)), and (uo-.97acos(e-8-90),vo-97asin(e--90)).

If the line through (uoVo ) perpendicular to S is subdivided

27



symmetrically about (uov) such that 1/3 of the univariate

normal density lies above each subinte:val, the three points

chosen above represent the "center of gravity" of each third

of the density (Figure 6).

3. If R is chosen to include a significant proportion

of the sensor density, i.e., on the order of 2a or greater,

the probability of the sensor being located in each of the

three regions is approximately 1/3. Thus, if p3 is on the

order of .86, multiply each result in step B.2 by 1/3.

4. Summing the results of steps B.2 and B.3 yields an

estimate of the likelihood that the threat lies at bearing

( given the threat is in the pl 100% confidence ellipse,

BT is in (L'BU ) and the sensor is in a P3 x 100% confidence

region. That is, the likelihood is estimated by

3,
f'(s) = j f (8)j=l i

where j is the index of sensor position in figures 5 and 6.

Instructions for application of the TI-59 program to

calculate the above are included in Appendix A.

C. THREAT DISTRIBUTION NOT BIVARIATE NORMAL AFTER TIME
LATE ELAPSED

The basic approach to evaluating f'(B) when the time late

distribution of the threat is no longer bivariate normal

is the same as that just discussed. The principal difference

28
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FIGURE 6. ESTIMATE OF SENSOR POSITION DENSITY
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arises from the fact that the ime late density is signi-

ficantly more complex in this case.

The threat distribution becomes distorted from the normal

after some time late when the cou:rse and speed of the threat

are constant but not known with certainty. Application of the

method described herein requires that the user assume a dis-

crete distribution of the speed of the threat with upper and

lower bounds SM and Sl , respectively. In addition, the threat

course is assumed to be uniformly between 00 and 360 °.

The density of threat location after some time late

when the threat speed is si then becomes [Ref. 1]:

E1

f (~y ~ 1 360 1 xs i tcos ( e - ) ) 2
f exp [--f(fX'Y ('tL'Si 2- X aY 0 2X

2(Y-S itLsin(e-)) d

- i 2  360

where 8 is the bearing of the major axis from North. Note

that the new threat density is still centered at the same

position as the time zero ellipse but its shape changes as

in Figure 4 of Chapter II. If the threat speed is si, and

the course is uniformly distributed over (00,3606), the

outer limit of the new planar region containing the threat

after time tL has elapsed, given that it was originally

located in the p1 x 100% confidence ellipse with semi-axes A

and B, can be represented by an ellipse with semi-major axis

A+sitL and semi-minor axis B+sitL (Figure 7). Thus the

30
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region over which the density will be evaluated is still

the intersection of an ellipse with an angular wedge,

recalling however that the density is no longer normal.

Further, the new elliptical region does not represent a

p1 x 100% confidence region of the time late density.

Calculation of the likelihood that the threat lies along

bearing 8 given that the threat lies in the p1 x 100% ellipse

at time zero, that thp true bearing lies in kL, U), that

the sensor lies in the p3 x 100% circle and that the speed is

si proceed4 as follows:

1. Estimate the parameters of the original normal dis-

tribution: mean = (0,0), ax 2 = A 2/(-2 in(l-p 1 )),

Iy2 = B 2/(-2 ln(l-pl)).
2. Determine the upper and lower bounds on the true

bearing wedge, 3 +kaa 8 and 6- ka*.

3. Determine the time late planar region as the ellipse

with semi-major axis equal to A +sitL and semi-minor axis

equal to B+sit.

4. Determine the position of the sensor relative to the

ellipse center.

5. Subdivide the bearing fan (8- k8 a6,8+ ka) into

2n subintervals.

6. At the midpoint of each subinterval, determine the

equation of the line through the ship position at that

bearing k'

7. Let the equation of the line of bearing ak be

X !-. Then, the plane perpendicular to the xy-plane which
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contains this line intersects the time late threat density

in a curve whose equation is

2

gL(y) m e _ e )( X

y+m2 2  mo X ay

2 2 2 2a M Xc 0" 2 1

I xa y ay + m x*e

360 (sit ) 2cos2 (e-)- 2 sitycos(e-)f ex 2-0 M

2 22

(sit 2sin2 (--2si.tysin(6- ) v

+ iL 2 2 ] 360 (4)

found by making the substitution x = y-c in the densitym

function f (xy;tL ) and expanding.

For computational purposes, assume that the width Wk

of the region of the time late threat ellipse cut out by the

angular subinterval around sk will be nearly constant through

the ellipse. Let the points of intersection of the line of

I -bearing ak with the time late threat ellipse be (X!,Ykl),

(Xk2 ,Yk2). Then approximate the time late density at speed

si over this region by the absolute value of the product of

Wk and the area under the curve gL between Y,, and Yk2" The

1 __ ~33 _ __
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area under curve gL can be approximated as follows. Sub-

divide the interval (YkYk2) into n, segments of length h.
k2 J.

Evaluate g at the midpoint of each segment, y . Note that

the first term in parenthesis in (4) is a constant equal to

m times the value of the density of a normal random variable

with mean zero and variance ay2+ m2 x 2 evaluated at c. The

second term in parenthesis is the density function of a normal

random variable with mean

2Ca

Y2 +m2 aX2
ay + x

and variance

M2 X2 Y2

Y2 +M2 C1X2
ay + m

evaluated at y. The variable y also appears in the integral

term in equation (4). Numerically evaluate this term of

(4) with y = yj. Let gi(yj) be the result of this computation.

Then, evaluating the area under the curve gL between Ykl

and Yk2 is equivalent to the calculation:

n i Jy2 , 2  2

+M w__ a + a Cmym c Y XIJ=lijy2+m2ax2 a(2 +m 2 x2 )  maxaY (J) giyj)

where Y(-) is the density function of a standard normal random

variable, and
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2 F2ziCay (l + m2 X

= (YJ- 2 2 2 Ma a
a Y+M a xYOy x

An analagous situation arises if the substitution Y =mX + c

is made for y in the time late density f (xyy;tL).

8. The value of the density over the subinterval con-

taining 8k is then weighted by the instantaneous probability

that the bearing error is k - -:

Yk2

W kl f y(XLY L ;tL)dyL f B(588

9. Steps C.7 and C.8 are then repeated for each sub-

interval of ( and the results of each calculation are

summed.

10. The uncertainty in sensor location is accounted for

by repeating steps C.4 through C.9 with the assumption the

sensor is located at each of the three points in Figure 5,

mltiplying by the probability the sensor lies in that

interval and summing each result.

11. The result of calculations in steps C.A through

C.10 is the likelihood that the threat lies on bearing a

given the threat was originally located in the p1 x 100%

confidence ellipse, -T £ (L, 3U), the sensor is located in

the P3 x 100% circle and the threat speed is si . The con-
dition that the speed is s i is removed by repeating the
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calculations C.i through C.10 for each of the speeds si,

i = l,...,M multiplying the result by the probability that

the speed equals si and summing all M results. The final

result is the likelihood that the threat lies on a given

it was originally located in the p1 x 100% ellipse,

3 (L, U) and the sensor is in the p3 x 100% circle esti-

mated as

M 3E P[S=s-] Y f
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IV. CONCLUSIONS

Possible applications of and extensions to the algoritms

developed in Chapter III are discussed in this chapter.

"s indicated in Chapter I, the objective of this paper

has been to develop a means of assessing the likelihood a

threat whose position has previously been estimated lies at

a given measured bearing from a local sensor. The procedures

were developed with a view towards permitting the user to

make comparisons among lines of bearing measured by different

sensors or among conflicting bearing information generated

by one sensor. The approach chosen has been to estimate the

likelihood that a threat lies on bearing 6 given that the

threat is located in an ellipse of specified confidence

p, x 100%, that 8 is measured with p2  100% accuracy, and that

the sensor position is measured with P3 x 100% accuracy. The

algorithm to calculate the likelihood in the cases where the

probability distribution of the target can be assumed to be

bivariate normal at the time of the bearing measurement has

been implemented on the TI-59 calculator. The cases in which

this program applies are the following: (1) when the time

elapsed since generation of the threat error ellipse is small

enough to justify using the original estimate of the ellipse;

(2) when threat course and speed are known, in which case

the ellipse center is translated from the original position

according to the course, speed and elapsed time information;
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(3) when the threat can be assumed to be moving about in a

random manner over a significant region in such a way that

the ellipse center remains unchanged, but the x and v vari-

ances have increased. When none of these cases hold, but

the course is assumed uniformly distributed ove." (00,3600)

and speed has a discrete distribution over a finite interval,

the threat density at the time late tL is not a bivariate

normal density. The algorithm applicable in this case has

not been implemented, but is described in some detail in

Chapter III and Appendix B.

i Once the appropriate computation has been completed for

each of the bearings considered, the results can be used to

weight the value of several bearings in refining the threat

location estimate provided by the external sensor. Note that,

although unlikely, f'(S) may correctly be greater than one.

Comparisons using these likelihoods should be made only when

the upper and lower bounds on the true bearina fan for each

bearing are chosen at the same probability level p2 and the

uncertainty areas for all sensors include the same probability

level p3. Further, these likelihood levels should be selected

so as not to exclude a significant portion of the appropriate

density. If P2 or P3 are not the same in all cases to zie

compared, f'(5) must be divided by the applicable value of

p2 or P for each measured bearing . to be considered.

Having established the relative value of available

bearing information, the user cani allocate weapons or further

search effort accordingly. However, the probabilities calculated
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are strictly ordinal data and do not define a redistribution

of target location probability based on additional informa-

tion. Further, the threat ellipse does not contain the

target with certainty. The power to predict the probability

of success of a search or weapons allocation plan based on

the priorities established by these procedures is limited

by these constraints. In this area in particular further

research would be useful.

In situations such as that for which the procedures in

this paper have been developed, where a track has not been

developed on the target, introduction of unrelated bearing

data to a target motion model could imact significantly on

.he reliability of future position predictions. If there is

high confidence in the reliability of the estimate of the

threat ellipse provided by the ocean surveillance sensor,

the orioritization established herein could be used to pro-

cess bearing data prior to input to a target motion model.

Using a pre-established threshold, only those bearings which

coincide with the threat with an acceptable level of like-

lihood could be used to refine or update a track on the

threat.

Desirable enhancements to the algorit.ms include providing

for the instances in which the interval of uncertainty of

the target course is known to be less than !V=,3600). Further,

if the circular region of radius R contains the sensor with

significantly less than 86% confidence or the assi-a.ption of a
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bivariate normal distribution of sensor location is unsatis-

factory, it is left to the user to modify the calculations

accordingly.

The utility of these algorithms would also be improved

by implementation on a larger and faster system than the

TI-59 calculator.
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APPENDIX A. TI-59 PROGRAM VERBAL FLOW AND USER'S INSTRUCTIONS

Part I
Step Number Verbal Flow

000 - 029 Enter the confidence level p1 for

the threat ellipse. Calculate the

value of k for the given pl:

k = V-2 ln(l-pl)

020 - 029 Enter the length of the semi-major

axis, A. Calculate ax = A/k.

030 - 052 Enter the length of the semi-major

axis, B. Calculate ay = B/k.
2 2

Calculate B/A, aX Y, aX and yy 2

053 - 058 Enter orientation of semi-major
axis, e.

059-063 Enter bearing from sensor to center

of threat ellipse, c. Calculate

064 - 073 Enter distance r from sensor

position to center of threat
ellipse. Determine rectangular

coordinates of sensor position

(U,V) from polar coordinates

(-r,8-t).

074 -089 Store the constants 360, V2/.

Initialize register 35 to 0.
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090 - 096 Enter nunber of standard devia-

tions desired for bearing fan, k8.

097 - 104 Enter standard deviation of bearing

error, a . Calculate k a

105 - 143 Enter the angular stepsize desired,

As, for incrementally stepping1
through (aL U). Calculate !A.

Calculate the largest number n of

increments of size a contained in

k AS degrees. Initialize

counter 00 to n+l. Save n+l in

register 20. Determine

1 -SA k k0a -8 fA - n5

the residual increment. Calculate
1

144 - 146 Initialize counter 01 to 2.

Calculations will be made at the

midpoint of each interval from

+ 1 to B + k a., then at the

midpoint of each interval from

S- to s - a and finally

at s. Counter 01 indicates whether

calculations are complete on both

sides of 8.

147 - 151 Enter bearing measured by sensor,

152 - 154 Enter standard deviation of sensor

position a.
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155 Enter index of the sensor position

to be used for this run.

156 - 157 Coordinates of the sensor position

are selected in accordance with

run number entered above in

Subroutine sin.

158 - 238 Determine whether a bearing 8'

parallel to either axis is included

in the fan (aL,BU). If (aL,8U)

includes a bearing parallel to the

y-axis, use program 1 for Part II.

The appropriate program number is

displayed in calculator display

register. If (BLB U ) does not
contain a bearing parallel to

either axis, use program 1.

239 - 259 Subroutine P/R.

260 - 340 Subroutine sin.
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Part II, Programs 1 and 2
Step Number Verbal Flow

000 - 003 Initiate 3'.

004 - 007 If the last angular increment on

this side of B has been considered,

go to step 513. Otherwise

continue.

008 - 012 Decrement counter for angular

increment. If counter = 0, go to

021 Otherwise continue.

013 -020 Remove flag to indicate this is

not the last angular increment.

Recall As, the input angular step-

size. Go to 029.

021 - 028 Set flag to indicate this is the

last angular increment on this

side. Add one-half the input

angular stepsize L and one-half

the residual stepsize 6S:
La8 + iAI: 2' 2

029 - 030 Increment 8' by the appropriate

stepsize.

031 - 05 Convert 8' to an angle between 0
and 3600.

046 - 051 Calculate 9-8'. Print 0-B'
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052 - 064 If !e-'i = 90 ° or =2700 , go to 236.

065 - 074 if !a-S'I = 00 or = 1800, go to 075.

Otherwise go to 133.

075 - 086 If the absolute value of the y

coordinate of sensor position is
greater than the length of the

semi-minor axis, ;, go to 004. In
this case a' does not intersect the

error ellipse. Otherwise continue.

087 - 088 Set flag 2 to indicate that the

bearing 3' is parallel to the

x-axis.

089 - 11 Calculate the coordinates of the

points of intersection of 3' with

the threat ellipse. The y-coordi-

nates are equal to V, the

y-coordinate of sensor position.

x-coordinates are determined in
Subroutine vX The points of

intersection are symmetric about
the y-axis. Thus, Xkl = -Xk2'

Store the smaller x value in
register 27, the larger in register

28.

112 - 132 Save locations of Xkl, Xk2' Ykl'

OX, and cy. Go to 291.

133 - 138 Remove flags 2 and 3 to indicate

that 2' is not parallel to either

the x- or y- axes.
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139 - 145 Calculate the slope of ':

m = tan (a-S')

146 - 154 Calculate the y-intercept of ':

c = V - mU.

155 -176 If c2 > A2m2 + B2 , go to 004. In

this case, S' does not intersect

the error ellipse. Otherwise

continue.

177 - 235 Calculate Xkl and Xk2 , the x-

coordinates of the points of inter-

section of 3' with the ellipse:

-mc+ A2m + B2  c2

X AXkl = 22 2
A m + B

A2

-mc- m 4- -c
A A2m 2 + B

Xk2  A 2 2 +B2

A
2

Calculate the y-coordinates of the

points of intersection of 3' with

the ellipse, Ykl' Yk 2:

Y kl =mXkl + c

Yk2 mXk2 + c

Go to 299.

236 - 247 If lUj, the absolute value of the

x-coordinate of sensor position,

is greater than the length of the
semi-major axis, A, go to 004. V'
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does not intersect the error

ellipse in this case. Otherwise

continue.

248 - 249 Set flag 3 to indicate that a' is

parallel to the y-axis.

250 - 272 Calculate the coordinates of the
points of intersection of 6' with

the error ellipse. T'he x-

coordinates are equal zo U, the

x-coordinate of sensor .Isition.

The y-coordinates are Aete_.-nined
x

in Subroutine y . The poin s of

intersection are symmetric about
the x-axis. Thus, Ykl = -Y

Store the smaller y value in

register 29, the larger in 30.

273 - 298 Save the locations of Yk2' Ykl'

Xkl, y, OX -

299 - 328 Determine the width of the strip

around 5', W:

If flag 0 set,

1W =(dl1+d 2 tan(f6AB),

Otherwise

1W =(d1+d 2 tan -AB).

dI and d2 are the distances from

(U,V), the sensor position, to the

intersection points (XklYkl) and

(Xk2 ,Yk2), respectively. Distances
are calculated in Subroutine log.
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Multiply W by LB if flag 0 not

set. Otherwise, multiply by 6A3.

Save result in register 37.

329 - 334 if 3' is parallel to either the

x- or the y-axis, go to 468.

Otherwise continue.

When using program 1:

335 - 380 Express the y-coordinates of the

intersection points as standard

normal random variables, Z1 and Z2

Y ki - 2 Cc m2  2
Z i  C;= y sX

lz, "XGy

I th 2 2

i= 1,2. 
V ;Y+M:X

381 - 391 Sort the values Z. in descending

order. Let Z 2 1 be the larger

value. Z1  is the smaller.

392 - 401 Calculate N(Z 2
1 ) - (Z1

t ), the

probability that a standard normal

random variate lies between ZI
and Z2
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402 - 424 Multiply the results of steps

392-401 by:

1-( C' )m x W,
J/2 2 x~ 2 2
V y 2+ m 2X y + m 2 aX2

where t is the standard normal

density nction.

The result of the calculations in steps 335-4Z4 is

Y k2;w Y fdv
X,Y m! Ykl

When using program 2:

335 -372 Express the x-coordinates of the

intersection points as standard

normal random variables Z1 and Z2
2

mc: x

xk2 +
2 2 2

Cy + m X
Z-

L/-X2 +2 2

i = 1,2.

373 - 383 Sort the values of Zi in descending
1

order. Let Z = larger value.

Z ' = smaller.

4i
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384 - 393 Calculate IW(Z2
1 ) - (Z), the

probability that a standard normal
random variate lies between ZI

and Z

394 - 413 Multiply the results of steps

384-393 by:

1 c

Iy + 2 2 2 + m2 2

where :- is the standard normal

density function.

The result of the calculations in steps 335-413 is

Y k2

I i W fx, mx+c) dx.
Ykl

Regardless of which program is in use:

425 - 465 Multiply results of previous

calculation by

6, < 180*where S" =
,4V3600 S > 1800

and & is the standard normal density.

The result of this calculation is

f '54 Iq f (x,y) dyi
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466 - 467 GO to 508

468 - 507 Calculate the area under the curve

formed by the intersec-ion of -'

with f (x,v). when S' parallels

the x-axis this calculation

becomes:

rI r(Z (Z2 1
-Y 2'Y

where Z= X.2/X and Z = /:x

V is the y-coordinate of the sensor

position.

When ' is parallel to the y-axis,

the calculation is:

1 . [ 2 _ (ZI) ]
-x ~x 2
where Z2 = Y k2/7 and Z1 = kl/y

r U is the x-coordinate of the sensor

position.

Go to 422 to complete calculation

of f 4(3;') 'W J Xy

(C to 410 in Program 2).

508-52.2 Accumulate the probabiLity at each

angular interval. Display result.

513 - 515 If flag 1 is set go to 558.

Otherwise continue.

516 - 520 If flag 0 is not set, that is if

the angular increment just con-

sidered was not the last on this

side of a, go to 004 and continue

calculation on same side of 3.
Otherwise continue.
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521 - 524 Decrement the counter 01. if

counter is now 0 go to 543. In

this case, the probabilities have

been calcu_ °ed on both sides of E.

The Calculation at s remains to be

done. Otherwise continue.

I

525 - 542 Remove flag 0. Multiply As,, 2A,

and -z' by -1 Reinitialize

counter 00 to n+l. Go to 000 to

begin calculation on second side

of .

543 - 567 Set flag 01 indicating that calcu-

lations on both sides of ; have

been completed. The next iteration

will do the calculation at 4' = z.

Remove flag 00. Initialize 9' to 0.

Recall E. Go to 029.

558 - 566 Remove flac 01. Displav -he

acc m- uated iikelic-. STOP

The result of this calculation is approximateiv f4 (5) with

sensor at (Ui,VI where i = run number entered in Part i.
J

567 - 587 Subroutine vx calculates the points

of intersection when s' is parallel

V7 to either the x or v axis:

Y = = V

ki= -A JI- 0U)2
I ,U 2

k2 A -
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Parallel to v-axis:

Y kl -B

Yk2 B

585 - 610 Subroutine log calculates the

distance from sensor position to

point of intersection of 3' with

the ellipse:

d = f _xki2 + (VYki) 2
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Part III
Step Number Verbal Flow

000 - 012 Enter result of run 1.

Multiply by 1/3.

013 - 021 Enter result of run 2.

Multiply by 1/3.

022 - 029 Enter result of run 3.

Multiply by 1/3.

030 - 032 Display likelihood.

033 - 041 If p2 is the same for all bearings

to be compared, enter 1. Go to

042. Otherwise, enter p2 for this

bearing. Divide likelihood by P2.

Display result.

042 - 050 If P3 is the same for all bearings

to be compared, enter 1 and STOP.

Otherwise, enter P3 for this bearing.

Divide likelihood by P3 Display

result. STOP.
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USER'S INSTRUCTIONS

The program to determine the likelihood that the threat

lies along bearing S given the threat is in the confidence

ellipse, a.s (aL,8U) and the sensor is within the P3 x 100%

confidence circle is in three parts. All parts require the

use of a printer and the use of the Applied Statistics

Library Module. Prior to running, the calculator must be

repartitioned:

1. Enter 4

2. Press 2nd OP 17

Part I

1. Read sides 1 and 2 of Part I

2. Read side 4 of Part II either program 1 or program

2. Since program 2 is used more often, unles. it is known

that the bearing fan (aLSU) contains a bearing parallel to

the major axis, recommend using program 2 of Part II.

3. Press R.

4. Enter pI, the confidence level of the threat ellipse.

Press A

5. Enter A, length of the semi-major axis. If data

provided is length of the entire major axis, divide by 2

before entering.

Press B.

6. Enter B, length of the semi-minor axis. If data

provided is length of entire minor axis, divide by 2 before

entering. Press C.
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7. Enter e, the bearing of major axis from North.

00 < e < 1800. e is entered in degrees. Press D.

8. Enter a, the bearing of the threat ellipse center

from the estimated sensor position. 00 < a < 3600, in

degrees. Press E.

9. Enter r, the range from the estimated sensor posi-

tion to the center of the threat ellipse. Press 2nd A'.

10. Enter k,, the number of standard deviations desired

in one direction from 3. The program will construct a fan

of equal size on the other side of s. Press 2nd B'.

11. Enter a,, the standard deviation of bearing error.

Press 2nd C'.

12. Enter AB, the desired angular stepsize. Press 2nd

D'.

13. Enter a, the measured bearing. Press 2nd E'.

14. Enter a, the standard deviation of sensor position.

Press R/S.

15. Enter the number of this run, 1, 2 or 3. When run

number = 1, sensor is located at its estimated position

(U,'vo). When run number = 2, the location will be

(U +.97cos(e-S-90),v +.97asin(s-8-90)). When run number = 3,
0 0

the location will be (wo-.97acos(e-s-90),vo-.97asin(e-s-90)).

Press R/S. If program number displayed matches that of the

Part II side 4 read in, continue to 16. Otherwise, press

2nd CMS, RST. Read in side 4 of the Part II program which

corresponds to the number displayed. Repeat 3 through,15.
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16. Press 4 2nd WRITE. Rerecord side 4 of the Part II

program read in. This enables data entered in Part I to

be transferred to Part II.

Part II

1. Read sides 1, 2, 3 and 4 of Part II Program 1 or 2

as selected by the Part I program.

2. Press RST

3. Press R/S. Values of a, and Wff (8;S )f (Q

will print alternately. Final result also prints out at end

of calculation.

4. Record final result: Likelihood threat lies along

bearing 8 given threat is in pl x 100% ellipse, true bearing

is in P2 x 100% fan and sensor is at location used in this run.

Parts I and II must be completed 3 times (Run numbers 1, 2

and 3) before proceeding to Part III if uncertainty in sensor

position is being considered.

Part III

1. Read side 1 of Part I.7.

2. Enter result of run 1. Press A.I3. Enter result of run 2. Press B.

4. Enter result of run 3. Press C.

5. Enter P2' confidence level of (BLSU), if necessary.

Otherwise enter 1. Press D.

6. Enter p3 confidence level of sensor position, if

necessary. Otherwise, enter 1. Press E.
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APPENDIX B. TIME LATE VERBAL FLOW!1<
VERBAL FLOW

1. Enter pl. Determine the value of k: k = -2 in (1-P 1 )

r 2. Enter A. Determine aX2 = (A/k)2

3. Enter B. Determine ay2 = (B/k)2

4. Enter e, orientation of major axis

5. Enter a, bearing from sensor to ellipse center

6. Enter range r from sensor to ellipse center

7. Calculate (uoVo ) the coordinates of mean sensor

position. uo= -r cos(-), vo= -r sin(e-)

8. Lnter as, the standard deviation of bearing error

9. Enter k,, the number of standard deviations to be

included in the bearing fan on each side of a.

10. Enter desired angular stepsize, as

11. Calculate the number of iterations of size As required

on each side of $: I = [(kpa -A)/Aas where [-1 means
the greatest integer less than or equal to the value within.

12. In general (ks -lA)/. is not an integer. Determine

the size of the fractional increment:

6A8 ((k a -AS)IAs- 1)As.

13. Enter a, the measured bearing. Let PROB2=0, PROBI=0

14. Enter the time late tL

15. For each of the discrete threat speeds to be con-

sidered, repeat steps 16 to 43. Then go to 44.

16. Enter the target speed s. Let PROB = 0

58



17. Expand the outer limit of the threat ellipse:

Let A' = A + stL

B' = B+ stL

18. Let '= S

19. For each of the I increments of size A3 repeat

steps 20 to 38.

20. Let S' = + La

21. -alculate (9-5') If lie-s' = 00 or 1800, go to 27.

If jS-8'j = 900 or 2700, go to 30

22. Calculate m = tan (e-s'), the slope of the line of

bearing.

23. Calculate c = mU+V, where (U,V) is the sensor loca-

tion for this iteration. c is the y-intercept of the line

of bearing.

24. Calculate m A + B c2 . If this quantity is less

than zero, the line of bearing 3' does not intersect the

threat ellipse. Go to step 20 and process next increment of

size A3, if any remain. If all I intervals of size a on

this side of 3 have been considered go to step 40.

25. Calculate the points of intersection of the line

of bearing with the expanded ellipse:

(-mc+ (B'/A').A 2m2 +B ' 2 - 2 ) (A' 2 )
X1 A 2m2 + B , 2

(-mc-(B'/A'))A'2m2 +B ' 2 - c 2 ) (A. 2 )

X 2  = A,2m2 + B' 2
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Y1  = mXl+ C, Y2 = mX2 + c

26. Go to 32

27. If I > B', the bearing 6' parallel to the x-axis

does not intersect the threat ellipse. Go to step 20 and

process next increment of size AS if any remain. If all .I

intervals if size LS on this side of S have been considered,

go to 40.

28. Calculate the points of intersection

Y1 Y= 2 =  VI 1  -- -B' 1- (V2/B' 2)

X2 = B' -(V2/B' 2 )

29. Go to 32

30. If iU1 > A', the bearing 3' parallel to the y-axis

does not intersect the threat ellipse. Go to step 20 and

process the next increment of size AS if any remain. If

all I intervals of size AS on this side of s have been con-

sidered, go to 40.

31. Calculate the points of intersection:

X = X = U

Y = -A' - (U2 /A' 2)

Y = A' )(U2/A' 2 )
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32. Calculate the median width of the strip of the

ellipse defined by the angular subinterval under considera-

tion. If the subinterval is of size Aa:

dl + d 1
_ 1 2(2 tan2 2

If the subinterval is of size 6AS:

dl +d2 1
W =-d 2 (2 tan LAB)

In these expressions di is the distance from the sensor to

the ith point of intersection, i = 1, 2: di = (U-Xi)2 + (V-Yi) 2

33. If !e-s'I = 0* or 1800, go to 36. If je-a'! = 900

or 270*, go to 35.

34. Evaluate the target density from Y,' to Y2' along
2

the line y = mx + c:

Let YI' = min(YlY 2)

Y2' = max(Y 1,Y 2 )

€4(z) = density function of a standard normal

random variable evaluated at z

(r/,2 2 2 2 + 2 02
(mi +mo) (c/Oy +mox)

Subdivide the interval (Y1 ',Y2 ') into n segments of length

h. At the midpoint of each segement, yj, compute:
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2
Y (' + +12 1Y

K(12+m27x/m ,) (Y y2 +m 2Ox2 mxY)

360 (st) 2cos2 (6-,;) -2sLY, cos ((-t.)

exp-2( 22

S(StL) 2sin2(e-:)-2s.y. sin(e-.,)

+ 2 )]360

ay

when the integral must be numerically evaluated.

Sum the results over all n secnnents.

Go to 37.

35. Evaluate the target density from Y to Y2' along

Ithe line x U:

Let Y 1 min(YlY 2)

S2 max(YI'Y
2)

o(z) = density function of standard normal random

variable

1 (-b

Subdivide the interval (YI',Y 2') into n segments of length

h. At the midpoint of each segment, yj, compute:

360 (st-) 2oos

1 s(e- .) -stLUcos(e -)hK-( (Yi)) ex [-
ax 7Y 0 U 22

Lin 0) --2s yjsin _d_+2 )H136
=y



where the integral must be numerically evaluated.

Sum the results over all n segments. Co to 37.

36. Evaluate the target density from Xl ' to X ' along

the line y = V:

Let X = min(X1 ,x2)

X2 ' =ax(X!,X2)

?(z) = density of standard normal random

variable

K 1 VY Y

Subdivide the interval (X1 , X2 ) into n segments of length

h. At the midpoint of each segment, xj, compute:

x. 360 (st) 2cos(e-.4) - 2stLx (Cos (e-)l__€ (l)tp (_21( .' 2

X X 6 UX

(StL) 2sin2 (e-) - 2 stLVsin(e -;)
+ 2~+ 2 )]360

where the integraJ must be numerically evaluated. Sum

results over all n segments.

37. Multiply the value of the target density just

computed by W.

38. Multiply this result by

where $ is the standard normal density function.
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39. Let PROB = PROB+ (the results of the calculations

in steps 20 through 38 for each if the I subintervals of

size LB).

40. If the fractional interval of size 6a on this

side has beon considered go to 41. Otherwise, let

51 = lAS + A. Repeat calculations 21 through 38 once.

Let PROB = PROB+ (the result calculated at this step).

41. If the computations on both sides of B have been

computed, go to 42. Otherwise repeat the computations

from 18 to 40 on the other side of B by letting Aa = -AS,

42. Let S' = s. Repeat steps 21 through 38 once.

Let PROB = PROB+ (the results of this calculation).

43. Let j = the number of discrete threat speeds to

be considered. Let PROBl = PROBI + P[S=s]PROB. Go to 15.

44. Repeat sters 15 through 43 once with the sensor

L-ocated at each of three points:

(1) (U,V) = (uv o ), the mean of the sensor

density;

(2) (U,V) = (u + .97acos(9-3-90),
ME 0

v 0 + .97asin(e-8-90));

(3) (U,V) = (uo - .97 cos(9-3-90),

v O - .97 sin(e-s-90));

where g is the standard deviation of the sensor density.

The value of PROBI calculated at each iteration will be

weighted by the approximate probability that the sensor is
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located in the region of the sensor error circle repre-

sented by the applicable value (U,V). If p3 is of the

order .86 or greater, multiply by 1/3.

45. The value of PROB2 calculated after completion

of step 44 is the relative probability that the threat

lies along bearing S at time tL , given the threat was in

p1 x 100% ellipse at time t St is in and the

sensor is in a p3 x 100% confidence circle.
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