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ABSTRACT

This Research Contribution describes a
methodology for assessing enemy ability
to trail friendly ships at sea., It con~
sists of four parts. The first part
treats the search for a lost quarry by
shipborne helicopter or long-range re-
connaissance aircraft. The second des-
cribes a Markov model yielding the frac-
tion of time the ship is free of triil.
The third part estimates enemy aircraft
requirements to achieve specific search
results. The last part presents and
documents an APL program, TRAIL, that
performs all required calculatioms.
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TRAIL: A SHIP-TRAILING MODEL

-

This Research Contribution describes a methodology to assess enemy
ability to trail friendly ships at sea. 1t consists of four parts. The
first part treats aircraft or helicopter search for a lost contact. The
second describes a Markov model yielding the fraction of time the ship
is free of trail. The third part estimates enemy aircraft requirements
to achieve specific search results. The last part presents and
documents an APL program, TRAIL, that performs all required
calculations.

P ORI X

~
A -

e

SEARCH BY AIRBORNE RECONNAISSANCE PLATFORMS

The trailing scenario is as follows. Each friendly ship has an
enemy ship assigned to trail it wherever it goes. When trail is broken,
a helicopter flies from the trailing ship to search for the target. If
the search fails, long~range radar reconnaissance alrcraft are summoned
from distant bases,

The General Case

b

e eyt e et 2 . e g 4 it <t +
e ) ]

Suppose the friendly ship breaks trail at time t = 0. We assume
here that the air search is random with a uniform target distribution
(that is, the target may be found anywhere in its area of uncertainty
with equal probability). Let:

s

S(t) = cumulative area searched up to time t
A(t) = target's area of uncertainty at time t
P(t) = probability of finding target before time t,

Then we have the Koopman formula:

() 4¢

T
g'
P(T) = 1 - K exp 0'[ - —A—(-F)- R (1)

where K 1is determined by the initial condition. This formula is
proved as follows, Let Q(t) =1 - P(t). The probability Q(t + At)
of not finding the target between times t and t + At = [the
probability Q(t) of not finding it within time t] x [1 - the
probability u of finding it between times t and t + At]. We have
u = [S(t + At) - S(t)])/A(t) because of the uniform target
distribution. These results lead to the differential equation

Q'/Q = -S'/A, whose solution is: Q is proportional to

exp (~[S'dt/A). The stated result follows.




In particular, let

]
[}

Z time when search begins.
Then S(t) is of the form:
$(t) = ¥(t - T))S (¢v) , (2)

where Y(x) is the step function, equal to 1 for x » 0 and equal to O
otherwise. 'The initial condition is:

B(T,) = min[1,5,(T,)/ACT,)] . (3)

The derivative of Y(x) is the delta function §(x), such that

jb o(x = ¢)f(x)dx = f(c) if c 1is in the interval (a,b) and 0
othervise. Applying this result to equation 1, we obtain:

B(T) = Y(T - T,) P,(T) , (4)

where:

SO(TO) T Sé(t)
1 - min l,m exp |- a0 dt {. (5)
o]

"
—
I

P (T)

o

A Special Case

Let:

<
nt

target speed after it breaks trail

<
1"

z gsearcher's speed

o}
#

Z searcher's radar detection range.

Assuming that the target's course is random, the target can be
found after time t anywhere inside a circle of radius vt. Thus:

A(t) = nvét? (6)




TATAr

The searcher sweeps out equal areas in equal times, beginning at To, and
so:

S(t) = 2rv'(t - T)Y(t - T)) . N

According to equation 5, we have: _

PO(T) =] - clexp(cZ/T) . (8) L

2rv' i

with ¢, = 3 and ¢, = exp( cleo) . 9 5
w .

Note that r, v, and v' enter only through the combination rv'/vz. b
Thus, variations in r, v, and v' that leave rv'/v2 unchanged do
not affect the search results.

A plot of the detection probability P(T) versus T 1is found in !
figure 1. As can be seen, P(T) increases very rapidly with T when f
the search begins at time T,. Because the area of uncertainty grows

e s
N |

1€, e e o e e e ———

Probability P(T) of finding target

0 T,

Time T since trail broken

FIG. 1: BEMAVIOR OF AIR SEARCH PROBABILITY
DISTRIBUTION P(T)

e Ao




faster than the searcher's search rate (quadratically versus linearly),
the target is not certain to be found. Indeed, letting T tend to =
in equation 8 shows that the probability of ever finding the target is:

Pmax =1 - Cl » (10)

which is smaller than 1.

For helicopter searches immediately following loss of trail, we
assume that the ship's area of uncertainty expands at a rate v, away
from the trailer and at a lower rate v, towards the trailer (see
figure 2). The difference is due to the fact that the ship is less
likely to go in the general direction of the trailer. Assuming the
higher noise produced by the accelerating ship does ngt reduce its area
of unceEtainty, we see that we must simply replace v© with
(v% + v2)/2. in equation 9. If the helicopter stops at time T x from
trail-break, and there are n, independent opportunities permﬁay to
break trail, and circumstances propitious for trail-breaking occur
independently every day with probability w, then the daily probability
of breaking trail is:

n
P=w [1 - P (T_ ) °pp] . (11)

Ship’s position when
trail is lost

X Last known trailer
position

FIG. 2: SHIP'S AREA OF UNCERTAINTY AT TIME t




The probability w can be tied to weather coaditions, such as sea
state or visibility, or to availability of escorts, or to other factors.

Expected Time Target Is Found

Because the target is not certain to be found, the expected time
the target is found is infinite. Nevertheless, one can define a
conditional expectation time:

E(T') = expected time target is found given it is found before T'.
It is given by the expected time the target is found up to time T'

divided by the probability P(T') of finding it before T', that is:

Y(T' - To) T'

E(T') = —prgry—— J TP' (T)dT . (12)
The result is:
c,c c c,/T
1°2 T 2 2’ %o
E(T') = ~—— In =—+ £ (=) e
1 clexp(czh"i T0 'ro
c c,/T'
-fH—p et | (13)
where:
«©
f(e) = e € (1 + I _cﬂ) . (14)
n=] nn!

The value of f(c) mst be calculated numerically. It is plotted and
tabulated in figure 3. All we need is the summation term, but we
introduce f(c) because it varies much more gently with ¢ than the
sumation term. The latter converges rapidly, especially when c¢ 1is
smaller than about 4. A word of caution: the function f(c) 1is
sometimes needed to a high degree of accuracy (several decimal places),
so that figure 3 will not always suffice. (Example: when exp (cy/T,)
is very large.) A TI-59 calculator program to compute f£(c) is
provided in table 1. Published tables can also be used (see below).

This result is derived as follows. The derivative P' of P 1is:

P'(T) = &(T - T)) P (T) + Y(T - T) B (T) , (15)

TXTTITITIT




f(c)

0.2

0.1
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FIG. 3: THE FUNCTION f(c) .
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TABLE 1

TI-59 PROGRAM TO CALCULATE f£(c)

]
e (145 @
n=]1 nn!

Definition: f(c)

Listing:

fidl Q= OsS
ooo 42 sSTO0 N1 e5 = 0e2 &6 FARU
ot 1o 1o Oz 53« 42 43 RCL
ooz 01 i 023 43 RCL ?44 Or 0E
003 42 5T0 024 10 10 b4S 53+
Ogd 08 J8 Ors 45 ye ydb 011
QoS 42 5TC OZe 43 RCL 47 w5 =
noe 07 av 027 D& 08 04 42 57Q
Q07 43 RCL n2e 54003 043 e 0e
oS o 10 o2e 35 =+ s 10 e
gos 34 4. 030 43 FCL 051 &1 570
010 22 IHY ' 08 o 05z 37 IFF
211 23 LHH 5% = 09z Ve LEL
a1 42 =70 43 RCL 054 10 E*
012 08 as a7 o7 0SS 28 PGH
14 Fe LEBL : 95 = 58 18 1%
15 &7 IFF 03E 25+ 037 11 A
016 43 RCL 037 43 RCL 3% I PGH
Q17 10 1o 038 33 0s 32 1e  1e
D15 94 +.- Oo3s 95 = el 13: ¢
013 22 IHY 040 42 =70 U6l 32 STO
020 23 LH= ez 0OF 07

063 32 RTH

To use: Key in ¢, and then press R/S. Display will flash the partial
sums for visual inepection of convergence. Stop execution (R/S) when
result does not seem to grow bigger. The result is in register 8; the
number of terms added in register 6. Program 16 of the master library
issued to calculate nl. Registers l through 10 and labels A through E,
E', and 1' are used. The constant c¢ 1is in register 10, and n! 1is in
register 7. The larger c¢ 1is, the longer it takes to get the result.

o
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1
1
with B, in equation 8. This gives (for T' > T,): 1
P (T) T' ]
Ty = o' o 1 ' )
o 1
3

This is a general result for all P(T) of the form of equation 4. When
T'+ 1,, it can be shown that E(T') + T,, as expected. It can also be i
shown that E(T') 1is between To and T', as expected. In this ;
special case, the first term is 0 because Pb(Tb) = 0 (from equation +
8) . Expanding the exponential in the integrand term by term gives: .
T' o0 cn ] '

T 2 f -n-1
L - ——
[ mmar=cge, (tnq + Z 7 [ 1 ar (an 4
T ) n=] T
o o
and the stated result follows. The sum can be related to the %
exponential-integral function Ei(x) by [1, p. 229, 5.1.10]: ;
o n
c .
n§1 Et_l_!. l:.i(c) Y In ¢ N (18)

where Y = 5772 is Catalan's constant and Ei(c) is tabulated [1, pp. 238 ‘
£f] . 4

When P(w) 1is close to 1 (that is, when the searcher is
practically certain to find its target) it is tewmpting to let T' tend ¢
to « 1in equation 13 to get the expected time the target is found.
Unfortunately, E(T') diverges because of the 1n (T') term. However, !
it is a mild divergence, so that letting T' be a large but reasonable
constant gives the desired expected tiwe, and the latter does not
increase much with large increases in T'.

Resumption of trail

Once the aircraft finds the ship, only half the work is done. The
trailing ship must now resume trail. What was the trailer doing after
trail was broken? Because, in the long rum, any course the trailer
takes is equally likely to be toward the final target position (at the
time the aircraft finds it) as away from it, we assume the trailer
roughly maintains its initial position O (see figure 4). At the
time T the ship is found, the area of uncertainty has grown to a
circle (C) of radius vT centered at 0. The ship is found, on
average, at a point a distance R¥ from O such that the circle

(C,) of radius R, contains half the area of uncertainty. This gives:

R, =vI/VZ . (19)




Ship area of
uncertainty
(c)

Point where aircraft
finds shi

Point where trail P |

was broken

FIG. 4: TYPICAL GEOMETRY WHEN AIRCRAFT FINDS SHIP

Once the aircraft commnicates the ship's position to the trailer,
the trailer moves toward the ship. But the ship moves too. In the long
interval after trail is broken, the ship might receive intelligence
information on the trailer's movements, or at least an estimate of the
trailer's position when the aircraft detected the ship, and it could
move away from that position. If so, it may be a long time before the
ship is back under trail, if it ever is. Assume a ship—quarry closure
rate of vp. Then, if the aircraft detects the ship at time T, the
ship is back under trail at time kT, where:

PR

Y

K=+ YIV2 (20) ;
v
T

More than one aircraft may be needed for any one mission, with each

aircraft relaying its findings to its relief. Note that the time
between T and kI, when the aircraft is holding the ship and waiting

for the trailer to arrive, can in some sense be considered a time under
trail for purposes of possible attack by platforus other than the ¢
trailing ship. In our context, however, “"trail"” refers only to direct !

trail by a specific trailing ship unassisted by outside assets.




Expected Rate of Trail Reacquisition

Our model assumes a constant probability per unit time that a
trailer will reacquire its target ship after trail is broken., Thus,
if s is the probability of trail being resumed n; days after it is
lost, then the daily trail-reacquisition probability P' 1is such that:

n
1-(1-P) =g , (21)

the days being assumed independent. Solving the equation for P'
when s 1is known, we get:

. l/nl
P' =1- (1l ~-5s) . (22)

Here, the ship is first reacquired by an alrcraft at time T,
distributed according to equation 4, After the aircraft has found the
ship, it stays with it until the trailer can arrive and resume trail,
which, as described above, takes a period of time proportional to T.
Thus, let:

k = constant such that trail is resumed at time kT if
aircraft finds ship at time T.
s = ratio of desired unit of time for reacquisition rate P'
to unit of time in distribution P(T) (here, 8o = 24
since we want a rate per day and T 1is in hours).
q = so/k .

What we want is the expectation value P' of:
1-[1-en)YT (23)

relative to the distribution P(T) in equation 4. For the reasons
explained earlier, we assumed that the search will be called off at a
certain elapsed time T . This time is designed to ensure that the ship
will be found with a given probability p, smaller than 1 -c;. t 1is
therefore given by inverting equation 8:

€2
T ——, 24
n (——B) (24

€1

-10-
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We have:

' 1 /T '

P'F(?Tj{l'[l'””]q } er(m) ar . (25)
Using equation 15, we have:

' q/TO PO(TO)
Pt a1 - [1 - po(ro)] xS
-1 _ /T ,

o] [ [1 po(r)] P! (T) dT , (26)

o

which is valid for all LA Specializing to the distribution in
equation 8, we get:

P'' = ] - clq/To exp(czq/'rg) [l - clexp(czl'ro)] p;‘l('r)
-P;I (1) [ c‘{/T exp(czq/'rz)] clcz'l‘"2 exp(czl'r)d'r . @7
o

Specializing further using equation 9, which indicates that Po('ro) =0,
we have, with the change of variable x = 1l/T,

c,c /T 8 ¢ 8
P' =] - 1p2 f %ax exp [ ok2 xz + (c2+—: In cl) x] . (28)
/t

This integral must be calculated numerically (see table 2 for an APL
program). Note that, unlike the expected time to find the target we
calculated earlier, P' does tend to a limit when T + =,

FRACTION OF TIME FREE OF TRAIL

The primary measure of effectiveness in avoiding trail is the
fraction of time at sea the ship is free of trail.

Result

We now describe the Markov model that leads to the following
result:

E = fraction of time at sea the ship 1s free of trail
n
_p +(P'-P°P'-POP)(1-P-P') [1-(1-?-9')] 29)
‘F‘ 1} »
+ ¥ n(P + P')2

-11-
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TABLE 2

NUMERICAL INTEGRATIONZ®

Listing:

QINTEGRALLO]Y
9 INT¢ABR INTEGRAL EPSjH3Wj;KjL
£1] Welp0,.S5X((Xe0)++/INTEGRAND AR) xHe~/0RP
£2] FIWeW, (WL(PW)=K~11:+2)+HX+/INTEGRAND(14AB) +(HEHE2) X7 142X
A28 71 +KeKel+he0
C3] GIWeW, INT(((4aL)XWIPW])-WL(pW)-K])sT14+4aL¢L 4]
Cal 2W0x LK
€S SFXV\EPS (| ~/WL(PYWEe(~1+2XK)AW)=-0,yK]

v
b
How To Run: To calculate jr £f(x) dx, define the function f(x)
a
in APL (calling it INTEGRAND), input the two-vector AB =
{a,b) and the desired precision EPS, and then key in AB
INTEGRAL EPS. Vector origin must be 1 (0 I0 « 1),
Example: a=0,b=1/8,4, §PS = 10-6,

f(x) = exp [239.5x° + (38.2 + 6,27 In ¢y) x]
VINTEGRAMD[[]Y
Y Y&INTEGRAND 3
[13 YEr(23IF.5xXx2)+%x38,2+46,27xaC]
9
010¢1
C1¢.,0104
(0r+8.4) IMTSGRAL 1E-¢
1,6409034

8 Using Romberg's rule. Program is from CNA's APL Library.

-12-

e e - B D T S Cup SIS




where:

P, = probability the ship is trailed when it leaves port

P = probability the ship will shake free on a day when
it starts out trailed (assumed constant)

P' = probability the ship is reacquired by its assigned
trailer on a day when it starts out free (assumed
constant)

n = number of days the trip lasts.

The first term frequently dominates. A required correction to E
will be discussed shortly.

Assumptions

The time unit is arbitrary. We chose to use the day. This means
that in a given day, the ship is assumed to be either trailed all the
time or free all the time. In other words, we assume that the process
of breaking trail or reacquiring trail occurs instantaneously at the
beginning of a day. This simplifying artifice does not affect the
result, If the unit of time is chosen to be, say, the hour, then the
“"rates”"®* P and P' must be divided by 24** and the time interval n
multiplied by 24. 1t can be verified that the resulting E remains
viztually unchanged.

Note that the daily break-trail probability P refers to losing trail
for a large fraction of a day. Broken trails that are quickly
reacquired, say by helicopters operating from trailing ships, are not
counted. Equation 11 gives a possible estimate of P.

* Strictly speaking, P and P' are transition probabilities, not
rates—-—a subtle but important difference in statisticgl calculatiomns.

If P were a rate, there would be a probability e ~"P™/n! of n
transitions per day; in fact, there_san be only one transition per day,
and its probability is P, not Pe ~. However, since the probability
of a transition in n days is 1 - (1 - P)", and since this expression
can be rewritten 1 - exp (~Mn) 1if one wishes to consider it a Poisson
process, one can identify =-In(l - P) with the "rate” A. For small

P, A=P,

** Or replaced by P =1 - (1 - ?)1/20’ assuming independence from hour
to hour,
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It is also assumed that each day is independent of the previous day for
breaking and reacquiring trail.

Range of Validity of Model

Obviously, the closer the exact probability of reacquiring (or
breaking) trail over A days resembles f(A) = 1 - (1 - p)*, where p
is a constant, the better the model. Note that the probability of
reacquisition is 0 for some time and then surges to high values in a
short period of time, unlike the eveun behavior of f(A)* (see figure
5). Nevertheless, the model is still valid, provided both the total
trip duration n and the mean time between trail-breaking events are
larger than the time A, when the two distributions do not differ
significantly in value. If these conditions are not met--say if trail
is frequently broken--then the frequent initial periods of no-trail will
add up significantly, and the model will underestimate the fraction of
time the ship is free of trail.

1<,

Probability

0 kT,

Time trail is resumed after it is broken

FIG.5: ILLUSTRATION OF APPROXIMATION
IN THE TRAIL MODEL

*The exact probability of trail resumption within A days after trail

is broken is 0 1if A(ka/so and Po(soA/k) otherwise, with P, as in
equation 8.




The Markov Chain

Since the days are assumed independent, we have a Markov process,
illustrated in figure 6. It has two states: free (F) and trailed (T).
The state vector is S = (Pp,Pp), where P, 1is the probability of being
in state A. The initial state S, is:

s, = (1 - PysPy) - (30)

T
— = Ship leaves port
Day 1

T

Day 2

|4

m
aooo

FIG. 6: MARKOV CHAIN FOR TRAILING MODEL

If P,y is the dally probability of transition from state A to state B,
then:

PFF-I-P', PFT-P"PTF-P'PTT-I-P. (31)

The transition matrix M 1is therefore:

- i r).

-15-

s n LT




The state vector Sk after

. k
bk- SOM .

The kth power of the matrix

uk o 1 P+ P'W
P+ \P- MW

where:

W=( -P-pr)k

in terms of Al and Az.

ml = Cn and mz = -Alxz

which gives:

k days is:

M can be calculated* to be:

P' - P'W
P'+ W )

*To find the nth power of a 2x2 matrix A, assume A" = mA + myI,
where I 1s the identity matrix.
and X an eigenvector of A, we have
gives A" =mA +m, for A =1, or

The result is:

Cn-l ’

An - (aCn - )‘IAZC -1 an
4 - ’
c(.n an AIAZCn—l
where:

n .n
fan My

A = da/ Cn T .
¢ 1~ %2

33

(34)

(35)

If Ay and A, are the eigenvalues
AX = AX and A"X = A"X, which

A= Ay, and yields m; and m,

The eigenvalues are obtained by writing that the determinant of A -~ AL
is 0. This ylelds A} =p +q and Ag = p - q, where:

a+d

P= = q--—i——[(d-a)2+4bc]l/2.

In our case, Ay =1 and Ag=1~-P-P',

i
[l
£
B

i




i 3
The probability @ that the ship is free on the kth day is the first 4
element of §;, namely:

Q = (¢ + P71 [P +ue - PP - PP . (36)

The expected number of days free of rrail is simply the sum of the
probabilities of being free for each of the days at sea. Dividing by
n gives the untrailed fraction E:

T k=l r

which leads directly to the stated result after use of the geometrical
progression:

n K 1 - xn+1
Z ¥ T (38)

Speclal Cases

When P' = 0, which is generally the case when the trailer is left
to its own devices, the fraction E of time free of trail simplifies to
E = E,, where:

P (1 -P)
EEI-—OT——[I-(I-P)n].* 39

* This special case can be simply derived as follows. The probability
of shaking the trailer off on the kth day is P, (1-P)*"1P. Tis action
results in n - k + 1 days free of trail. Thus:

2 k-1
nE =n(l-P)+Y (n-k+ 1)P (1 -P) P.
o " .1 o

Using the geometrical progression result of equation 38 and the fact
that

n n
Y kxk- x-%; P xk = x(1 - x) 2 [1 -x" - n(l - x)xn] ,
k=0 k=0

we get the stated result.
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When n + « (long trips), we have:

P
E 4 P +—P-.— . (40)

When P = P' (the ship breaks trail as easily as the trailer
reacquires) and P = Vé (the ship is trailed during port exits as often
as not), the ship gs trailed exactly half the time. The same result
obtains if P = P' =l,, or if P =P' and n+=, or if P =P' =P =1
and n 1is even.

Behavior of Q,

From equation 36 we infer that @, the probability of being free
on day k, decreases with k 1if P' - POP' - POP is positive and
increases with k 1if that quantity is negative, provided P + P' {is
smaller than 1, The asymptotic limit (steady-state value) of Qk for
large k is P/(P +P'). If P + P' is larger than 1, Q oscillates
up and down around the limit, but the oscillations damp out with time.
If P+ P' =1, Q 1s always equal to the limit,

Examgles

The behavior of @ is illustrated in figure 7 for P = P',
P.= .2, and n = 90, As can be seen, the closer P + P' 1is to _,
tge faster the process reaches its steady state., The latter is reached
rather fast anyway: by the tenth day, Q differs from the steady-
state value by less than 10 percent.

>
<]
v
23
TN J V¥
2€ 4
= 9
|8
ss P=p'=.5
a8
g 2r P=pP=.9
b Po=.2
NS AR RN NS GRS S UR W |
o 1 2 3 4 5 6 7 8 9 10 90

Days since ship left port (k)

FIG. 7: DAILY PROBABILITY Qi SHIP IS FREE OF TRAIL




Figure 8 shows how the fraction of time free of trail, E, varies
with P, P', and Po. For simplicity and so as not to introduce bias,
we choose P = P'--the ship breaks trail as easily as the trailer
reacquires it. The trip lasts n = 90 days. The dependence on P_,
predictable in nature but surprising in magnitude, is as follows:*

- —
NPT SEII. SRV SR S,

e If P 1is relatively large (over 5 percent a day)--
frequent trail loss and reacquisition—-the result is
virtually independent of P_. For example, for P = 5
percent, if the ship 1is picﬁed up in port (P, = 1), it is .
free of trail 45 percent of the time; if the ship is not F?

picked up in port, it is free of trail 55 percent of the ¥

time.

e If P 1is relatively small (less than 5 percent a day)--
rare trail loss and reacquisition--the result depends
strongly on P_., For example, for P = ] percent, if the i
ship is picked up in port (Po = 1), it 1is free of trail 27 :
percent of the time; if the ship is not picked up in port,
it 18 free of trail 73 percent of the time. i

Corrected Fraction of Time Free of Trail |

If the aircraft search succeeds only with probability p, then equation f
28 gives the corresponding P' and equation 29 the corresponding E.
Since the ship is not reacquired with probability 1, and since only 98 !
percent of the trail-breaking events are prosecuted, the (corrected) N

expected fraction of time free of trail, 35, is:

E = gp x E (calculated with the P' corresponding to p,
using equation 28) (40a)

+ (1 - gp) x E (calculated with P' = 0, from
equation 39)

where g = ,98.

* The curves are symmetric with respect to the line E -Ué. That is,
. if P=P', E - Vz changes sign when P, changes into 1 - |
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D

10

P, = Probability of being trailed

09 - during port egress

n = 90 days at sea

>
g

Fraction of time free of trail (E)

0.2
01
| | L L j
0 0.01 0.02 0.03 0.04 0.05

Daily probability of breaking or reacquiring trail (P = P’)

FIG.8: EFFECT OF TRAILING AT PORT EGRESS
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Equation 40a, which is an approximation, is a correction to E
required by the observation that a constant daily reacquisition
probability P’', however small, implies eventual reacquisition, whereas
in reality reacquisition is not certain: 1its probability can be no
higher than gp. Equation 40a is a slight underestimate of the fraction
of time free of trail.

ENEMY AIRCRAFT REQUIREMENTS

In this section, the number of reconnaissance alrcraft the enemy
requires to achieve specific search results is calculated.

To estimate the required aircraft inventory for the reacquisition
efforts, the quantity

f,(k) = probability of m trail-breaking events in the first
k days of the n-day trip

is needed. 1t is not easy to calculate.* Here we only present an exact
line of approach and an approximation, and calculate the mean of the |
* distribution.

Exact Approach

This method, developed by James K. Tyson, consists of defining the

matrix:
- (1 -2 P!
Mz = ( zP 1 - P) ’ (41
¥
which reduces to the Markov matrix M in equation 32 for z = 1, By |
“flagging” the P with a 2z, we isolate a trail-breaking event. The s

coefficient of 2z® 1in any result based on M, 1is then assoclated
with m trail-breaking events. Let S, = (Fk Tk) = SOMZ be the state !
vector after k days. Then fm(k) is simply the coefficient of z™ in ﬂ

* fm(k) is not, as one might think, the binomial distribution

m) Po(1 -P)*™, It depends on P, and P' as well. As an '
illustration, 1f P, = P' = 0, the ship is never trailed, so it never
breaks trail, and fm(k) = 0 for all nonzero m and k. !

e g
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Fk + T, (we sum the two because it does not matter whether the end state
is free or trailed), that is:

£ (k) = — L +T) (62)
n m! 2™ k k’|z=0°

The eigenvalues of M, are:

kl-v+/u_andkz-v-/\'x_ . (43)
where:
P + P! p - p\2
vELl-—me- , us 5 + zPP' ., (44)
We have:
k
(Hz) = ck“z - KIAZCk-II ’ (43)
where:
k k S-1
) k -5
s S T k\ k- 2
e 2 X% z, (S)v v (46
172 s=1

where I, indicates that the summation extends only to odd S. Note that
fa(k) = 0 for mdk/2. The formula checks out for small values of k,
but no simple closed form could be found.

Expected Number of Trail-Breaking Events

The mean of the unknown distribution fm(k) can be calculated
exactly using the results from the Markov approach. We have:

F(k) = expected number of trail-breaking events in the first k
days

P [n(1 -E) + P, - (1 - Q)] , (47)

with E as in equation 29 and Q¢ as in equation 36. The first term
generally dominates, especially for large n and small E,

—p———— =




This result is derived as follows. The probability of a trall- %
breaking event on day 1 is P_P; on day 2 it is (1 = Q))P; and on day t
k it is (1 - Q._;)P. (The probability of being trailed on day 1 is r
1 - Q). Adding up these probabilities gives f(k). Using the
definition of E 1in equation 37, we get the stated result. 1

Approximation

PP Y

We base this approximation on equilibrium (steady state) being
reached rapidly. According to equation 36, the probability 1 - Q of
being trailed on day k rapidly approaches its steady-state value,

P' 3
| Qk » P-—+---P-'- , (48) s

when any of the following three conditions is met: !
e P, =P'/(P+P') (the trip happens to (49)
begin in the steady state) '

e P+ P =1 (the system falls in the steady (50)
state, Qk ~ P, almost from day 1)

o (1 -P- P')k = 0 for k < n (fast approach (51)
to the steady state). i

If one of these conditions obtains, we can assume that the
probability s of breaking trail on any given day in the steady state,

I

A X3 (52)

is independent from day to day. The probability £ (n) of m trail-
breaking events in the n days is therefore approximated by a binomial
, distribution:

£ (n) = (:) (1 - s)"™ . (53)

Now compare the mean of the above distribution, ns, with the exact
mean f(n) calculated earlier (equation 47), 1If the two are in
agreement, the approximation is probably good. Generally, agreement
will be observed if both these two conditions are met:
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e ExP/(P+P) (54)

e n> P, (1+P/P)-1. (55)

The first condition obtains for large n or if either of the condi-

tions in equations 49 and 50 is met. The second expresses the fact that .
the first term should dominate in the expression of ¥(n) in

equation 47.

Note that the steady-state distribution of trail reacquisition
events is the same as that for trail-breaking events, as it should be.
Indeed, PP'/(P + P') can be interpreted as either Px[P'/(P + P')] or
P'x(P/(P + P')].

An APL program for calculating the cumulative binomial is given in
table 3.

Calculation of Aircraft Requirements

Given the validity of this approximation, the standard deviation
o 1s:

o = [ns(1 - 8)]1/2 (56)

The cumulative distribution, or probability that k or fewer events
will occur, is approximated [2] by:

¢(k'l- 1‘/,2-ns)’ (57)
where:
x -1/2 2
o(x) = [ (1) “exp(-t°/2)at (58)

is the standardized normal distribution. Thus, the probability of No
events over the mean ns 1is given by:

o (weg) - (59)

For 20 confidence (N = 2), the probability is over 98 percent, since
¢(2) = 97.7. Tus, by planning for 20 events over the mean, one is
confident of being able to handle at least 97.7 percent of the events. .




TABLE 3

CUMULATIVE BINOMIAL APL PROGRAM

Coding:
eRINCD]v
v BIN
. £1) SE(PAPP )P PP
€21  weversMe~t
32 P x ‘jPE , PP x PP , SO 8 =z '§S
C4] 'N o= '§N
£S) AWEN VeV (MIN)IX(SAM)X(1=-S)aN=MeMs]
6] F(McN)PA
(] 'FROBABILITY OF K EVENTS OR LESS (K = Orl192r.009N)8 14V
£81 IMEAN NUMBER OF EVENTS! ! jNxS
£9) 'STANDARD DEVIATION: *3(NX%%21-%)20,.5

Input: N (number of days n), P (probability P), PP
(proba

pro

bility P')

Intermediate output: the binomial probability S = PP'/(P + P')

To execute: Key in inputs, then BIN.

Example:
Pe,243

Ne90
BPIN

PPe,28 °

key in

P = 0,243 » PF = 0,28 » SO S = 0,1300956
Nz 90
PROBABILITT OF K EVENTS OKR LESS (K = Oyl192reesrN)?

MEAN

STANDARD DEVIATION! 3,191452

3.568103E76 0.0000515935 0.0003712048 0.,001773291
0.006333%21 0.018046518 0.04291957 0.08752375
0.1567315 0.2510327 0.34652642 0,489512 0.46118379
0.7216022 0.811887 0.8802984 0.92825463. 0.95%94764
0.9784119 0.9859143 0,9948402 0.99746804 0,9990125
0,9996015 0.9998474 0.9999443 0.9999808 0,9999937
0.999998 0.9999994 0.9999998 { 1 1 ¢+ § 1 1 1
i1 1 1 1 1 1 1t 1 1t 1 1 i1 1 1 1 1 1
1 1

1

1
i 7+ 1 1 1 1 1 1 ¢ 1 1 1 1 1 1 1
1 1

11 1 1 1 ¢ 1 1 11 1 1
NUMBER OF EVENTS! 11,7086

=25~




The number of trail-breaking events per n-day trip that are observed 98
percent of the time is therefore:

f(n) + 2/ns(1 - 8) (60)

for a single ship. For n' independent ships, the mean is multiplied
by n' and the standard deviation by /n', * so that the number is:

v=n'f(n) +2 /n's(l - 8) . (61)

It 1s always best to use aiccraft assets to prosecute many trail-
breaking events with few sorties per event rather than few trail-
breaking events with many sorties per event, because the area of uncer-
tainty grows faster than the area searched.

A conservative estimate (to be discusied) of the number N, of
reconnaissance aircraft required in inventory to guarantee (1) that over
98 percent of events will be prosecuted and (2) that trail will be
resumed after each event with probability p, is:

Ng = ve,/nt. (62)

where:

n, = number of sorties an aircraft makes per month
t, = maximum time an aircraft can stay on station

t, = aircraft time on station that guarantees trail is resumed
with probability p (= kg - To)

v = %Q v, with v in equation 61 (63)

= number of trail-breaking events per month aircraft inventory
is tailored to prosecute.

* When n independent random variables are summed, adding the means and
the variances gives the mean and variance of the sum.




This number is derived as follows. Since t; aircraft-hours are
required per event and our aircraft can only spend ¢t hours on sta-
tion, n, = /ts sorties are needed per event, that is, wn, sorties
per month. S}nce each aircraft can make only ng sorties per month,
w,/ng aircraft are needed.

If each reconnaissance aircraft requires q tankers, the total
number of aircraft required is:

Ngp = (1 + Qg . (64)

The result in equation 62 for enemy aircraft requirements is only a
rough, conservative estimate. Many more assumptions, models, tradeoff
analyses, and operational data are required for an accurate assessment
of those requirements. First, the trail-breaking events are assumed
evenly spread in time, even though they may tend to cluster. For
example, if trail tends to be broken in bad weather, then bad-weather
periods will contain many more events than good-weather periods. These
surge requirements will drive up enemy requirements. Consider the
example (arbitrary parameters) where five sorties are needed per event
for a p = .6 reacquisition probability and the enemy plans for

v = 85 trail-breaking events per month under conditions yielding a

w = ,12 daily probability that circumstances will be propitious for
trail-breaking. The aircraft fly 12 sorties per month. Our results
show that the enemy needs 85 x 5/12 = 35 aircraft. But if we assume
perfect correlation between the times when circumstances propitious for
trail-breaking occur throughout the ships’ area of deployment, trail-
breaking events will cluster every 1/.12 = 8.3 days. Thus, as many as
85 x 8.3/30 = 24 events could be expected to occur roughly at the same
time, which would drive enemy requirements up to 24 x 5 = 120
aircraft-—-over three times the number we calculated. Therefore, the
detailed distribution of trail-breaking events in time and information
on the correlation between the occurrence of circumstances propitious
for trail-breaking in different areas are needed. Second, we assumed
the enemy knows when to expect reacquisition, when in reality he does
not and must automatically send follow-up sorties to ensure that an
aircraft about to leave station is relieved. On the other hand, we used
the maximum (not average) number of sorties consistent with a given

i ik .




probability of reacquisition (p), because there is a limit to the
extent to which unused sorties can be "saved"” for future use.*

Information on how frequently an aircraft can be flown in a given time
interval, however short, must be included in more refined esimates of
enemy requirements. Also, variations that might be attractive for the
enemy-—such as flying more than one sortie soon after trail is broken,
while the area of uncertainty is still small-——must be assessed.

As can be expected the dominant factor by far in anticipating enemy
aircraft requirements is w — the fraction of time opportunities for
trail-breaking occur.

APL PROGRAM FOR TRAIL

Description

Most of the above calculations were encoded in an APL program. The
26 input variables are listed in table 4 and the 23 output variables in
table 5. The coding is in table 6. There are four different functions:

e ARM, the overall control function (for.g}rcraft
Egconnaissance Egssion)

e INTEGRAL, the function that performs the integral in
equation 28

e INTEGRAND, the integrand of equation 28
e PEE, the function that calculates P from equation 11.

The program is executed by keying in all input variables and then ARM.
Should the input probability of finding the ship, p, be larger than
can possibly occur, an "invalid” message 1s printed. Vector origin is
1, and results are printed to four significant figures, as instructed in
line 2 of ARM. Should the input tolerance EPS used to calculate the

* The following simple example shows that there are cases when only the
maximum number of aircraft will satisfy the requirement. Assume there
is exactly one trail-breaking event per day, that the aircraft can each
fly exactly one sortie per day, and that the ship is reacquired the same
day it breaks trail, if at all. Assume further that one sortie yields a
+4 probability of reacquisition, two sorties .6, and three sorties .8,
The average number of sorties flown is then (.4 x 1) + (.2 x 2) +

(.4 x 3) = 2. The question i8: how many aircraft in inventory will
guarantee that 80 percent of the trail-breaking events are reacquired
over a long period of time? The answer is three (the maximum), not two
(the average). If only two aircraft are bought, there will be no way a
third can be found when needed. Unused sorties are lost forever in this

case.




— — oo 1

TABLE 4
INPUT VARIABLES IN TRAIL
Symbol for

Name of variable
variable in text Definition

DR r Reconnaissance aircraft radar‘ggtection
range

DRH r Trailerborne helicopter radar detection
range

EPS - Tolerance in calculation of integral in
equation 28 (example: .00l for three-
decimal-place accuracy)

FRE - Frequency vector (weights attached to each
of the aircraft mission radii in R,
according to the likelihood of each mission
radius. Sums to l.)

‘ HTR T, Trailerborne helicopter reaction time--
from breaking of trail to initiation of

search
N n Number of days trip lasts

NS Ng Number of sorties a reconnaissance air-
craft makes every month

NP n' MNumber of ships (to be trailed) at sea
at any given time

Number of opportunities to break trail on a
day when circumstances (e.g., weather) are
propitious for trail-breaking

oPpP n

PP P Probability ship is trailed when exiting
port

PS P Probability of finding ship by recon-
naissance aircraft, on which aircraft
inventories are based

R - Vector bearing the mission radii the air-
craft might be called on to cover
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TABLE 4 (Cont'd)
Symbol for
Name of variable R i
variable in text Definition i
Sy 8, Number of hours in a day (=24) '
sl 8) Number of days in a month (=30) '
SMX Thax Time from trail-breaking when trailer- ;
borne helicopter stops searching and g;
calls reconnaissance aircraft '
|
TKF q Mumber of tankers required per recon- .
naissance aircraft ¥
3
TR - Time from trail-breaking to reconnais- '
sance alrcraft taking off (TR>SMX) !
TS tg Reconnaissance aircraft time on station i
for each of the mission radii in R i
(vector) :
. !
v v Ship's cruise speed (long-term rate of }’
expansion of ship's radius of uncertainty) {
- |3
Vi V] Rate of expansion of ship's radius of i
uncertainty in directions towards the |
trailer, shortly after breaking trail By
v2 \/) Rate of expansion of ship's radius of |
uncertainty in directions away from the |
trailer, shortly after breaking trail ‘
(usually, ship's maximum sustained speed) '
VA - Reconnaissance aircraft transit speed to f
station | 3
]
VH v! Trailerborne helicopter search speed i
ve v' Reconnaissance aircraft search speed in
vT v Trailer~to-ship closing speed after air-
craft has detected ship
WEA w Probability that circumstances (e.g. .

weather) will be propitious for trail-
breaking on a given day.

=30~




TABLE 5

OUTPUT VARIABLES IN TRAIL

Symbol for
Name of variable
variable in text Definition
cl < Quantity defined in equation 9 (vector)
c2 ¢y Quantity defined in equation 9
E E Uncorrected fraction of time ship is
free of trail (equation 29) (vector)
E@ E, Fraction of time ship is free of trail
when P' = 0 (no reacquisition capability)
(equation 39)
EB E Corrected fraction of time ship is free
of trail (equation 40a) (vector)
(4
EBf - Average value of EB
. FBN f(n) Expected number of trail-breaking events
during ship's n-day trip (equation 47)
(vector)
II - Value of integral in equation 28
(vector)
KK k Constant such that trail resumes at time
kT 1if aircraft detects ship at time T
(equation 20)
NR Ng Required number of reconnaissance aircraft
(equation 62) (vector)
NRT Npt Total number of aircraft required, including
tankers (equation 64) (vector)
NRTP - Average value of NRT
NU v Number of trail-breaking events per month
. that 18 not exceeded more than 2 percent

of the time (equation 63) (vector)




Symbol for
Name of variable
variable in text
P P
PH -
PMAX Pmax
PP p'
QN Q,
S s
T Tb
Tl tl
TAU T
TT te
AB,Cl1,E1,F,G,
H,I,INT,K,L,Q,
Ww,X,X1,X2,Y

TABLE 5 (Cont'd)

UNCLASSIFIED

Definition

‘naissance aircraft arrives on station

Ef fective probability ship shakes free on a
day when it starts out trailed (equation 11)
(vector)

Probability trailerborne helicopter
Teacquires ship per trail-breaking
attempt (P ( max) in equation 11)
Maximum probability of aircraft detect-
Ing ship (given unlimited search)
(equation 10Q) (vector)

Effective probability ship is acquired
by its trailer on a day when it starts out
free (equation 28) (vector)

Probability ship is free on day n—-the last
day of the trip (equation 36) (vector)

Steady-state daily probability of either
breaking or reacquiring trail (equation
52) (vector)

Time since trail~breaking when recon-

(vector)

Aircraft time on station per trail-breaking
event that guarantees a probability PS (p)
of finding ship (=(KK x TAU) - T¥) (vector)

Aircraft search time that results in a
probability PS of finding the ship
(equation 24) (vector)

o -

Reconnaissance aircraft transit time to
station (vector)

Variables used internally




€11
£21
£3]

41

Cé61d
€71
£8l
£91l
£101
€111
£123
£131

TABLE 6

APL CODING OF TRAIL

VARML[]V

9 ARMjQ

SINPUT !

QPP¢3+010¢1,0rG¢0,98

'VAz'jVAj ', TR=!'jTR; 'y, VP='jVP}§', DRs'}DRj ', V='jV}',
PSe'jPS;'y VT='3VT;'y, S0='3S0}'y EPS='EPS;"', PO='3;P0
§'y N='jNj'y NP='jNPj', NSzIgNSj', S1 = '§S1j§'y Vi='}
Vij'y V2='3V25', VH='jVH;}', DRH=';DRH;} ', HTR=';HTR; ',
OPP='jOPP} ', SMX='jSMX}', WEA=';WEA}' ,,TKF = '3TKF

'R = '3R

'FRE = '}FRE

'TS = '3TS31 42"

TOUTPUT 31 4p'~"

'1€2 = 'FCR¢(2xDRXVF)+(Va2)xel

IKK = '3KKEL+VEVTX220.5

YAVGE TT = '3¢/FREXTTS ', TT = ' TTeR:VA

TAVG TO = '$+/FREXTO3'y TO = '§TOTTH+TR

'C1 = '§C1ex(0-C2)=TO

'AVG PMAX = !'j4/FREXFMAX}', PMAX = ¢‘jPMAXeE]-CY

H(PS> L/PMAX) pX2

'AVG TAU = ';4+/FREXTAU;', TAU = ';TAU+C2:@(1-P5)+C]
IeIX¢0
K1 AB+(+TAULIJ) y=TOLT¢X+])

Ciiecicz]

I1¢IX,AE INTEGRAL EFS

F(IcpR)pXY

"AVG II = 'j4/FREXIX;', II = *$IXe1yIX

TAVG PP = ' 4+/FREXPPF}', PP = 'jPPe]1-C1XC2XIX:PS

PEE

El «P+PP

'AVG E = '$+/FREXE}'y E = 'jEC(PEL)+((PP-POXEL)X(1-E]
INL=(1-EL1)aN)+NXEL2D

'EQ = 'FEOF1-POX(1~F)X(1-(1-P)aN)+HXP

'AVG EB = 'jEBQ¢+/FREXER;', EB = 'JEB:((PSXE)+E(QX1~PS)
+G

TAVG @GN = '$4+/FREXQN;'y GN = ';QNe(FP+(PP-POXE]1)X(1-E1)
aN)+EL

'AVG FBN = '3+ /FREXFBN} 'y FEN = ' FBENePX(NXLI-E)+PO-~-1~-
aN

-y e e e e
- ™o Nl awaen PR WP




€301
€311

€321
€331
[34]
€331

£3613
€371

£11
€23
£33
L4l
£s)

1]

11
£21
€31

v

L4

v

9

4

TABLE 6 (Cont'd)

1AVG S = '$4+/FREXS}'y S = 'jSePxPP:E]

1AVG NU = ‘3+/FREXNU; ', NU = 'JNUC(SI+N)X(NPXFEN)+2x( |
NP xNXxSXx1-5)20.5

'AVG T] = '$4+/FREXT13'y T1 a3 '$T1¢(KKXTAU)-TO

TAVG NR = '34+/FREXMHR} 'y, NR = ' JNRNUXT1+NSXTS

TAVG NRT = !'jNRTQ¢+/FREXNRT; 'y NRT = ' $NRTE(1+TKF)XNR}
1 12

'SUMMARY{ AVG NRT = '§NRTQ$', AVG EB = '}EBQ; 'y EOQ = °
$8031 402~

+0
X2!'CASE INVALID, PS IS UNATTAINABLE,'$1 40f°'~"

YINTEGRALLQOI®

INT¢AB INTEGRAL EPSjHj;WiKjL

WelP0.5X((Ke0)++/INTEGRAND AB)XxH¢~/@AR
FiWeW, (WE(PW)=K=11+2)+HX+/INTEGRAND(1488)+(HeN+2) X~142x
\2271+KeEK41+Le0
GIWEW,INTE(((ARL)XWLPW])-WL(pW)-K])+T1+420L¢L+]

G 1L <K

IFX\EPS(|~/WL(pWe(=-142XK)4W)=-0,K]

QINTEGRANDLQ]V
YINTEGRAND X
Yer((SOXC2+KK)XX22) +XXC2+4 (S0+KK)x0C11

OPEELO]Y
PEE; Q
Qe (4XDRHXVH) <01 x(V122)+V222
'PH = 'jPHEl-2AX(+SMX)~=HTR
‘P = 'JPEWEAX]-FHROPP

e e - ———— ——— . = —  —
R <

kb e e

e il




l
|
integral be too small, space limits may be reached, and EPS may have to i
be reduced (which sometimes happens for small ship speeds v because of ;
the large value of the integral). :

Several aircraft mission radii can be input at the same time, with :
their relative frequencies of occurrence. The results are then pre- ;
sented separately per mission radius and averaged.

A word on units. The input and output lists refer to hours, days,
and months. This choice is arbitrary and can be changed. The issue
here is not preference but reasonableness of results. A ship is in the
“trail” or "no-trail” state for a whole day. If it is felt, for exam-
ple, that a 12-hour interval would be more appropriate than a day; the
input SP must be changed from 24 to 12, The same goes for the month,
which is the time interval on which aircraft inventories are based
(input S1).

Examples

A sample run of TRAIL is shown in table 7. The input quantities
are arbitrary and are not intended to reflect specific systems.

An example of the kind of results TRAIL can generate is the frac-
tion of ships at sea that are free of trail at any given time, E, as a
function of the number of aircraft the enemy deploys. This function is
obtained by running TRAIL several times for different values of p (the
trail reacquisition probability that the enemy tailors his aircraft
inventory to achieve). In our illustrative case, the result is:

P (PS) 0 ol .3 5 07 .8 9 095 .99 ‘
ngy (NMRT) 0 12 18 22 2 29 36 45 106 |
£ (E8) 86 .82 .68 .52 .35 .27 .18 .14 .11 |

Figure 9 is a plot of E versus ngre When no aircraft are deployed,
the trailing ships are left to their own devices.




TABLE 7

SAMPLE RUN OF TRAIL .

ARM

THFWUT

w6350, TF=5, VP=150, DR:250, V=20, FS=0,7y VT=3, S0=24, EFS
=1€E75y, FO0=0.,5y H=120y WNF=50, MS=10y, 51 = 30y Vi=10, V
N-:20y VH=7%5, DRHM=40, HTR=] ,2, OFF=4, SMX=Z, WEA=(),05 ,T
KF = 0,9

o= 2000 3000 4000

FRE = 0,2 0.7 0.1

T o= 26 18 10

CUTELTY

= 59,48
e 50714

AVG TT = 4,462,577 = 3,077 4.615 6.104

AYG T = 9,482y T0 = 8,077 9.615 11.15

¢1 = 0,0006178 0.002015 0.004744 ]
AVG FMAX = 0,998, FMAX = 00,9994 0.998 0.9953
AVG TAU = 11,72, TAU = 9,44 11.93 14.39

AVG IT = 4,674y TI = 15,29 4,862 2.122

AVG PP = (,14683s FF = 0,1946 0.1646 0.1417
FH = 0,8517%

F o= 0,02347

AVG E = 0,1372, E = 0.,1201 0.1392 0.1581

£Q o= 00,8378

AV ER = (), 3545, EBR = 0,3422 0.3559 0.36%4
AVG O¥ = 0,124, QN = 0.1084 0.1257 0.1431
AVEG FEN = 2,441, FEN = 2,49 2,436 2,383

AVE S = 0,02073, % = 0,0211 0.02069 0.02028
AVG HU = 34,03, HU = 36,69 35.96 3I5.24

ave T1 = 57,5, T1 = 47.06 58.855 71.08

AVG MR = 13,71y HRE = 4,905 14.04 25,09

AVEG MET = 246,05y HMRT = 13,12 26.67 47.6

SUMMART! AVG MET = 24,05, AVG EE = 0,354%, EO0 = 0.8378

T

A A

e
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FIG. 9: SAMPLE RESULTS OBTAINED FROM TRAIL RUNS?

]
. 8Based on a fleet of 50 target ships and 50 trailing ships at sea all the time. 3
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