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ABSTRACT

Queuing Network Models of a computer system operating
with a single workload type are presented. Progranms
which operate on the Texas Instruments SR-5) program-
mable calculator are included.
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SOME QUEUING NETWORK MODELS OF COMPUTER SYSTEMS

Queuing network models provide a basic tool for under-

standing computer systems and predicting how they will perform.

The use of networks of queues to describe what is going
on inside the computer is a relatively old idea, but its wide-
spread apﬁlication to practical broblems has only recently taken
hold. In September of 1978 the 7CM devoted a special issue of
~ Computing Surveys to Queuing Network Models of Computer Systems
Performance. The issue contains eight outStahding'articles: the

editor's overview, three tutorials, three'applicaticn notes and an
assessment of the field of analytic modeling. Tihe excellent tu-
torial by Denning and Buzen [1] provides a point of departure for
this paper.

In an earlier paper by this author [2], conventioﬁal

Markov modeling techniques were used to develop a simple model of
n terminals dealing with a single server system. A program for
the Texas Instruments SR-52 programmable calculator was presented
in that paper. The very compact algorithms presented in the tu-
torial by Denning and Buzen provided the inspiration to attempt
more complex models on the SR-52 programmable calculator. Four
programs are presented in this paper. They provide a capability
to handle a large number of closed network, single workload

problems.



In modeling terminology closed systems are systems in
which there is a limited population of jobs; they are called
closed because jobs don't enter and leave but continue to cir-
culate within the system. Most real computer systems deal with
limited job populations;bécause there are limited facilities for
handling jobs; interactive job populations avre limited by the
number of terminals attached to the system; batch jobs may be
limited by available job input’stofage space; both are limited
during execution by fixed amounts of main memory or software
imposed multiprogramming limits. Thus models of closed systems
are most appropriate to handling these real system environments.

The computational requirements for network queuing mod-
els increase with the complexity of the system being modeled. The
simpiest anc easiest closed system models have two servers, a
single vorkload and up to perhaps three jobs active; pencil,
paper, and patiehce are sufficient computational resources to

handle these models.

For larger job populations - up to perhaps six or .seven -
an inexpensive calculator with three memory registers can replace
the pencil and paber. Here the limit - six or seven - is estab-
lished by the stamina and dexterity of the analyst. The job pop-
ulation can be arbitrarily large and be accommodated on a pro-
grammable calculator with as few as 10 memory registers and 200
program steps. (This was shown in [2].) 1In this paper, still
dealing with an arbitrary job population and a single workload,
the central server system may consist of up to six separate
devices ... or five devices one of which may have a load dependent
service time. (The load dependent service time function is re-

stricted to a simple function of the number of jobs in the queue.)



This size of problem can be handled with the 20 registers and 224
program steps available on the SR-52, This centralAsystem model
requires two memory locations per device plus seven or eight loca-
tions for other variables and indices.

The marvelous thing about all of this is that the algo~
rithm developed by Buzen (and used in these programs) implicitly
enumerates all of the system states which can occur for n’ jobs
visiting k devices, and solves the associated equations. A system
state is any unique distribution of the nu.ber of jobs at each de-
vice in the system. The number of ways n jobs can be distributed
among k devices is given by the expression:

(n + kK - 1)t

L= Srw=1"

The result for a central system with five devices and a
population of 20 jobs, is 10,626 states. Solving the resulting
10,626 linear esquations by brute forcé techniques would require
tens of thousands of memory locations to manage the problem. With
Buzen's algorithm (and a modest twist added by this author) any'
single workload problem can be handled with two locations per de-
vice plus about eight overhead registers. (Note: The main bene-
fit of Buzen's fast algorithm is the reduction in numbers of
arithmetic 6perations required to enumerate and solve th~ equa4
tions. From the viewpoint of storage the algorithm Buzen de-
scribes actually requires one location per device plus one loca-
tion per job plus overhead. The twist added to further compact
the required storage is to evaluate the matrix row by row instead
of column by column. On the SR-32 this means an unlimited job
population can be handled with 2 maximum of six devices.)



Much more powerful and sophisticated tools are required
to handle multiple load dependent servers, multiple classes of
jobs, and a variety of queue service disciplines. The BEST/1
program offered by BGS Systems and the CADS program offered by
Information Research Associates are two such tools; they require
tens of thousands of memory locations for instructions and data

space, .also they run on large scale computer systems.

In today's world of programmable calculators the Texas
Instruments SR-52 has been replaced by the TI-59. It provides
roughly twice the capacity for the same price. The programs
presented in this paper can be easily converted for use on the
~newer TI-59. This newer calculator provides sufficient space to
tackle some simple two-workload problems and will be the host for

future model developments by this author.’



THE CLOSED SYSTEM MODELS

Four programs have been developed to aid in the analysis

of closed gueuing networks,

1. Batch model with homcgeneous service times

2. Batch model with one load dependent server

3. Interactive model with up to five devices

4, Interactive model with a load dependent central
server

The two programs for batch models will be discussed to-
gether since there are only minor variations between the two.

Then the interactive models will be presented.

THE BATCH MODELS

In order to introduce nomenclature and demonstrate how
these may be used a sample problem approach is taken. Figure 1
illustrates five servers in a batch processing system. At the
bottom of the figure is a table showing the average job's char-
acteristics., The typical job visits the swap device one time per
job and requires 0.8 seconds to swap the job in. The job visits
both the CPU and the channel 100 times; once for each disk input/
output. Disk 1 gets 70% of the traffic. Disk 2 gets 30%. The
service time per visit is shown for each device. The numbers
which are needed in the model are the total service times for the
job at each device, Yk = Vksk' The CPU at 4 seconds of total ser-
vice carries the heaviest load and will be the device which 'ul-
timately limits throughput.



Figure 1
Sample Problem - A Batch Processor

99 N
100
. \J/
——>| SWAP |—9®.3 CpU CHANNEL
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JOB CHARACTERISTICS
NG. OF TIME FER
DEVICE DEVICE =~ VISITS VISIT TOTAL SERVICE
NAME NO. k Vi Sy—- _Y, SEC.
Swap 2 1 .8 ) .8
CPU 1 100 .040 4.0
Disk 1 3 70" .030 2.1
Disk 2 4 30 .030 9
5 100 ..012 1.2

Channel
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The Buzen algorithm fills in numbers in a two-dimensional
matrix G. Colurmns in the matrix corresponé to devices in the sys-
tem and rows to the number of jobs. Elements of the matrix are
computed from the adjacent elements, above and to the left, as
shown in the figure below. 1Initially the first row contains 1l's

and'the first column contains 0's.

DEVICES
0 1 2 eee k-1 K oo K
0 1l 1 1 1 1
1l
2
JOBS .
n-1 0 : . g(n-1,k)
, IYk
n 0 : . , . .
. g(n,k-1) g(n,k)
N-1 0 G(N-1,K)
N 0 G (N,K)

Each element is com:zuted as follows:
g(n,k) = g(n,k-1) + Y, g(n-1,k)

where the Y, multiplier is the service time of the job at

device k.



At the end of the ccmputation the quantity G(N,K) is
found.* This is the normalizing constant for the product form
equations where all devices have homogeneous service times. That
is, the service time of the device is the same regardless of how
- many jobs are waiting in the queue. The rightmosct column of the
matrix contains the ccuplete series of normalizing constants from
G(1,K) through G(N,K). The performance measures of interest are
functions of these normalizing constants end the device service

times.

System X (N) _ G(N-1,K)

Throughput ' N G(N,K

Utilization G(N-1,K)

of Device k U (N) = ¥ “G(N,K)

Mean Queue N

. ™ G (N-n,K

Length at Q, (N) = 2 Y;: %}%ﬂ’l

Device k - o
n=1

Service Time of S(N) = IR

an Equivalent X (N)

Load Dependent
Server

An alternative way of calculating the mean queue length

is given o, the following recursive formula:
Qk(N) = Uk(N) (1 + Qk(N—l))

This method is particularly useful because one storage
location per device is all that is needed to accumulate the
mean queue length for an unlimited job population. The other
expression implies storage fcr the complete column of n values of
G(n,K).

*Note on Nomenclatures:  In this paper g(n,k) denotes an inter-
mediate value in the 4 matrix and G(N,K) is the final value
correspocnding to N jobs and K devices. Similarly h(m,k) and
H{(M,K) denotes intermediate and final values in the h matrix for
interactive systems.




Batch Model With Homogeneous Service Times

The program for the batch model with homogenecus service
times will handle up to six devices and any number of jobs spec-

ified by the user. 1Its short name is Batch HST-6.

The model is used where the service times for all devices

are homogeneous.

The program is a straightforward implementation of
Buzen's algorithm, Due to limited storage space the mean queue
length is computed only for device 1. The following points cover

inputs, outputs, and controls for the program:

Inputs to the model

° number of jobs ' N

® device number 1 - 6) k
device service tinmes Y

Outputs i1n order of presentation are:

° number of jobs N
) mean queue leagth at device 1 Q
™ novmalizing constant G (N,K)
o throughput with N jobs X (N)
L) mean job sorvice time S (N)
° up to six pairs of:
- device number
- utilization Uy
® 99 indicating end of output



Input Controls - N, k, ¥ 'plus RUN
These three controls are located on function kcys A,B C,
respectively. Depressing the key interrupts program

execution and displays the current value of the variable.

insert a new value if required

hit RUN to confirm your input action
Note: k is a dual purpose input.
° It indicates which device time, Yy will be

input next during input operations.

° Tt indicates the highest numbered device K

to be modeled during execution.

Execution Controls - EXEC, RES, RUN

EXEC Executes the program starting with an ini-
tialization of all required registers. The
program will run until results are to be
presented for a load of N jobs. EXEC is on

funr.ion key E.

RUN The progrem halts ana displays its outputs in
the preset order indicated above. Run is
used for two purposes:

«. to obtain the next display in the cycle
2. at the end of che output cycle depressing
RUN will continue the operation increasing
the load to N + 1 without having to

compute from scratch with a new EXECUTE.
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RES Resume is & special :control which will
continue the computation of g(n,ki without
starting from scratch., 1t is intended to
provide a shortcut around the logic which
computes and displays the utilization
statistics. In can be safely used at any
point in the output cycle to advance tc the

next level of ‘load.

Batch HST-6 has two main uses. The fifst, and most
obvious, is to use it to model a batch processing system. Its
second -purpose is to model any subsystem of up to six devices, in
order to obtain the schedule of service times for an equivalent
load dependent single server. An example of its use in this role
will be given in the description of the interactive model with a

load dependent central server.

Recall again the sample probleh in Figure 1. The CPU
portion of the job is the largest combonent. The CPU will tend to
be the limiting device so we assign it to device #1, to obtain the
mean queue length. ’ ‘

Table I shows the results of running the program for job
populations N = 1 through 5. Reading down each column the results
appear in the order which the program producés them. Tn the out-
put routine the device utilizations are output as a pair of num-
bers: first, the device.number,}then thé utilization at that de-

vice; only the utilizations appear in Table I for each column.

11



Table I
Batch HST-6 Results for Sample Problem

Jobs N 1 2 3 4 5
Queue 1 (CPU) .444  ,997  1.65 2.40  3.23
G(N,K) 9.0 52.15 252-. 1111 4684
" Throughput X{N) <111 172 .207 224 .237
Service Time S(N) 9.0 5.79 4.83 4.41 4.21
‘Utilizations:

5 - Channel .133 - .307 .248 .272  .285
4 - Disk 2 .100  .155  .186  .204  .214
3 - Disk 1 ©.233  .362  .435  .476  .498
2 - Swap .089 .138  .146  .181  .190
1

- CPU .444 .690 .828 . 906 .949

The performance of the CPU is the main limiter in the system
because the work is so CPU heavy. With five jobs active the CPU
will be almost 95% busy and on the averéqe there are 3.2 jobs at
the CPU.

The appendix provides a listing of the Batch HST-6 Program for
the SR-52. '

12



Batch Model With One Load Dependent Server

The second program ié a minor variation on Batch HST-6 which
allows one of the devices to be a load dependent server. When
load dependent service is introduced at one of the devices the
Buzen algorithm, slightly modified, can still be used to determine
the throughput of the system. The device queue lengths, however,
are no longer simple functions of the normalizing constants,
G(N,K), and algorithms more complicated than can be easily handled
on the SR~52, are required to compute these performance
quantities.

In the modified program three registers are used to specify a
simple model of the load dependent server. (In Batch HST-6 two of
the registers were used for device #6 and one was used to accu-
mulate the device #1 Queue length.) The net result is a program
that can handle five devices., Device #1 is the load dependent
server. The short name for this program is Batch LDS-5.

The load dependent server model is a simple function of the
number of users in the device queue, Figure 2 illustrates the
function. Base service time, B is a constant service time the job
experiences up to the load at which the inflection point occurs in
the function. Beyond the inflection point load, L, the service
time per job increases by the increment amount, I for each
additional user.

13



Figure 2

Load Dependent Server Model
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Stated another way:
" For n L Y(l,n) = B
For n > L Y(l,n) = B + (n - L)I
where:
¥(i,n) = service time at device #1 with n in queue
' B = Base service time
L = Load at the inflection point
I = Increment per job in queue

The modification to Buzen's'algorithm is simply to create the

elements in column 1 by multiplying the previous row's value by

the appropriate ¥(1,n). For the device 1 column:

g(n,1) = ¥(1,n)g(n-1,1)

14



The remaining rows and columns of the matrix are Zormed in the
same way as previously described. At the end of the matrix com-
putation G(N-1,K) and G(N,K) are available. These allow the fol-
lowing to be easily computed:

System X(N) = Eé%ﬁlé§l
Throughput '
‘Sarvice time of an S(N) = _YT%T_

equivalent single server

For devices with homogeneous service times the utilizations
can be computed from the relationship:

Utilization at device k Uk=YkX(N)

" The following narrative covers the inputs, outputs and
controls for the Batch LDS-5 program:

Inputs to the modei

® number of jobs N
.® device number (1 ~ 5) k
e device service times ¥y
® base service time B
e load at inflection point L
¢ increment per job I

15



Qutputs in order of presentation are:

number of jobs

device 1 service time
normalizing constant
throughput with N jobs
mean job service time

s & ¢ & o ©

up to five pairs of:’
device number

utilization

® 99 indicating end of output

Input Controls - N, k, ¥, plus RUN

7

The:e chree controls are located on function keys A,B,C,
tespectively. Depressing the key interrupts program
execution and displays the current value of the variable.

Y(1l,n)
G(N,K)
X(N)
S (N)

e insert a new value if required

e hit RUN to confirm your input action

Note: k is a dual purpose input.
o It indicates which device time, ¥, will be

input next during input operations.

e It indicates the highest number of devices to

be modeled during execution.

Input Controls for Load Dependent Server-

B,L,I plus RUN

The parameters B,L and I are iuserted as a group

function key D and the RUN key., Operation is as follows:

16



Depress function key D labeled B,L,I
Current value of B is displayed

Insert new value if desired and depress RUN

" New value of B is displayed

Depress RUN
Current value of L is displayed

Insert new value if desired and depress RUN

’ New value of L is displayed '

Depress RUN
Current value of I is displayed

Insert new value if desired and depress RUN
New value of I is displayed

Execution Controls - - EXEC, RUN

EXEC Executes the program starting with an initializa-
tion of all required registers. The program will
run until results are to be presehted'for a load of
N jobs. EXEC is on function key E.

RUN The program halts and displays its outputs in the
preset order: indicated above. Run is used for two
purposes: '

1. to obtain the next display in the'cycle

2. at the end of the output cycle depressing RUN
will continue the operation increasing the load to
N + 1 without having to start from scratch.

Batch LDS-5 has the same main uses as Batch HST-6, with the
addition of a single load dependent server. It can be used to
model a batch system or to model a subsystem of up to five devices

in order to obtain an equivalent load dependent single server.

Once again let us use the sample problem of Figure 1. This

time we will introduce load dependent service on the CPU to see

17



how it may affect the performance of the system. We will use the
4.0 sec of CPU time as the base service time. Beyond a load of
two in the queue, the service time will be increased one second
per job in the queue, That is tc say:

B = 4.0 L =2 I =1.0

_ Table 1T shows the results of running the program for job
populations 1 through 5. The format of the table is similar to
Table 1; the queue at device 1 is not éomputed or presented. The

device 1 service time with n in queue is presented in the second

rov.
Table IT
Batch LDS-5 Results for Sample Problem
Jobs N 1 2 3 4 5
Y(1l,n) service time 4.0 4.0 5.0 6.0 7.0
G (N ,K) 9.0 52.15 268 1415 8398
Throughput X (N) 111 .172 .195 .189  .168
Service Time S(N) 9.0 5.79 5.13 5.29 5.93
Utilizations: .
& =~ Channel .133 .207 .234 .227 .202
4 - Disk 2 .100 .155 176 .170 .152
3 - Disk 1 .233 «362 .409 . 397 . 354
2 -  Swap .089 .138 .154 .151 .135
I - CpU .444 .690 - ,974% 1.135*% 1.18%

Comparing Tables I and II, one can see the effects of the
load dependent CPU. In the first two columns of the table the

performance measures are, of course, the same; the CPU service

18



time is still the base value of 4.0 seconds. At the load of three
jobs there is a slight loss in throughput compared with the first
case study. Scanning across throughput now one finds the maximum
occurs at three jobs on the system, beyond three jobs acti-e the
increased CPU time per job has a larger negative effect than the
usual positive effect of adding more jobs to the multiprogramming
set. This sort df thing can happen in overloaded systems, the per
job device time may increase in heavily used systems; for example,
as a result of increased competition for memory, more page fault
interruptions may be required -~ resulting in more CPU and disk
service time per job. The BLI function is used to represent
increased system overhead past the threshold of thrashing.

One final note, the CPU utilizations marked with an

asterisk in the table are the ones reported by the program. They
are not correct because the CPU is a load dependent server. These

utilizations were computed by multiplying maximum service time by
throughput. The true value of the utilization of the load de-
pendent server lies between this upper limit and a lower limit
computed as the product of minimum service time and throughput.
The algorithm for computing utilizations and queue lengths fecr the
load dependent server would exceed the space available 'n the
SR~52,

The appendix provides a listing of the Batch LDS program.
Of particular note is the load dependent server model located at
program steps 091 throbgh 115. This section of the program can be
changed to create other load dependent models. Registers 16, 17,
and 18 contain the variables B, K, and I; these may assume dif-
ferent meanings or usage in a different load dependent server
model. Any substitute function should start at the same location,

19



091, and place the appropriate value of service time in Register
01.prior to LABEL C, currently at location 117. Note that a com-
pletely arbitrary load dependent service time schedule can be
ente:ed dynamically by replacing the current LDS routine with a
halt and display of the current value of Regiéter 01, If the user
changes the register to a new value it will be t..e next one used.

The required routine would be:

RCL 01
HLT
STO 01

Using this routine it is possible to model any number of devices
by breaking the system into device groupings of 4 to. 6 devices.
For example a 10 device system could be modeled as a six device
subsystem p1ué3four individual devices, First Batch HST-6 is run
to obtain a schedule of load dependent service times. Then Batch
LDS~5 is run using the subsystem service times for device 1 and
the remaining four devices as two thru 5. This is an exact method
of combining multiple devices. . |

One.user of this program has noted that the BLI function is
an approximation to what hapgens during thrashing. He reports two
additional subsystem approximations that he hss found v.eful. For

a P processor multiprocessor, Y(l,n) = S.* min (n,.; " is a rea-

sonable form for an approximation. B = i represents an ideal
multiprocessor., With B < 1 various amounts of multiprocessor mu-
tual interference can be modeled;' For an 1/0 subsystem a power
curve fit of the form Y(l,n) = A* nin (n,V)_B provides a good ap-
proximation. In this case V is an arbitrary maximum value which
is specified by the user. TI prégram STI~-09 from the statistics

library is handy for determining A and B.

20



THE INTERACTIVE MODELS

The tutorial by Denning and Buzen also presented a very
compact algorithm for handling interactive systems. Again we will
use a sample problem approach. Figure 3 illustrates such a sys-
tem. It has M terminals connected to a central system. Each of
the terminal users has an average think time Z. The central sys—
_tem has the same five devices and associated service times as the
previous batch cases had. (This will facilitate using the batch
results in solving the interactive systems.} For the case study
we will use a think time of 10 seconds and terminal populations
M=2, 4,6, 8, 10. '

The M terminals represent M jobs in the system as a whole.
-Actuvally some number N are on the central system at any given time
and M-N jobs are out at the terminals. The terminals are treated
as a single subsystem whose service time is Z/n when there are n
users thinking (i.e. jobs at the terminals). The terminal sub-
system is thus a load dependent server. The devices in the
central system all have homogeneous service times.

Tﬁe algorithh, attributed ﬁo Williams and Bhandiwad {31, is
quite similar to the Buzen algorithm described previously. The
interactive algorithm fills in a two dimensional matrix h; the
columns correspond to k devices; and the rows correspond to the m
terminals. Elements of the matrix are computed from the adjacent
elements, above and to the left as shown in the figure below.
“Initially row 0 and column 0 contain 1's,

Each element of the matrix is computed as follows:
hi{m,k) = h(r,k-1) + mYk/Z h{m~1,k)

where ¥, is the service time of the job at device k (Y, = Vi 8).

21



Figure 3
Sample Problem - Zn Interactive System

B

TERMINALS |

1 A~
106G
SWAP VA CPU CHANNEL e
99 \
JOB CHARACTERISTICS
NO. OF TIME PER

DEVICE DEVICE VISITS VISIT TOTAL SERVICE

_NamME NO. k Ve _ 8. ¥, _SEC.

Swap 2 1 .8 .8

CPU 1l 100 .040 4.0

Disk 1 3 70 .030 2.1

Disk 2 4 30 .030 .9

Channel 5 100 .012 1.2
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At the end of the computation the values H(M-1,K) and H(M,K) are
available. These allow the following performance measures to be

computed,
Central sys*em idle
probability

Throughput

Responsge time

Mean active load

1

P (0) H(M,K)

. H(M-1,K)

(
H(M,K)

3T 4

X (M)

R(M) T(E(d'ﬁ') -z

(&S]
i

M - Z X(M)

B2cause the devices of the central subsystem are homogeneous
the utilization of each device is simply the product of Yo the
service time. and X (M), the throughput of. the system.

23 ()(){\)IG v
P Poe,'” Pag
RCIERS
“ TY



Interactive Model With Homongeneous Service Time

The program for the interactive model with homogeneous
service times will handle up to six devices and any number of
terminals specified by the user. The short name of this program
is Interactive HST-6.

The program is a straightforward implementation of the
interactive algorithm and provides all of the performance para-
meters indicated above. The following cover inputs, outputs, and
controls for the program.

Inputs to the mode?!

° aymber of terminals M
) device number (1 - 6) k
e device service times Yy
° think time v Z

Qutputs I~ ~vder of >resentation are:

e number of terminals M
° normalizing constant H(M,XK)
° system idle P(0)
® throughput with M terminals X(M)
° response tiae R (M)
. mean jobs in system 0
. up to six pairs of:
- device number k
- utilization Uy
° 99 indicating end of output

24



Input Controls

These

- M, k, ¥, plus RUN

three controls are located on function keys A,B,C,

respecively, Depressing the key interrupts program

execution and displays the current value of the varizakle.

® insert a new value if required

hit RUN to confirm your input action

'_k_is a dual purpose input. .

o It indicates which device time Yk will be
input next during input operations.

® It indicates the highest number of devices to

be modeled during execution.

Execution Controls - EXEC, RUN

EXEC

RUN

Erecutes the program starting with an initializa-
tion of all required registers. The program will
run until results are to be presented for a load of

M terminals. EXEC is on function key E.

The program halts and displays its outputs in the
preset order indicated above. Run is used for two
purposes: o A

1. to obtain the next display in the cycle

2. at the end of the output cycle depressing RUN
will continue the operation increasing the load to

M + 1 without having to start from scratch.



The sample problem in Fiqure 3 is a simple variation on the
. original batch problem of Figure 1 - the job characteristics on
the central system are the same in both cases. The difference is
in the wav jobs are introduced to the system; the original case
had N jobs always present; in this case study M terminals intro-
duce the jobs to the system after a think time of 10 seconds.
Table III shows the results of running the program with loads of

2, 4; h, 8, and 10 terminals.

Table II1
Interactives HST-6 Results

M Terminals 2 4 6 8 10
H(m,k) 3.843  19.56  139.8 1454 22009
P(0} - system idle .260 .051 .007 L0066  .00004
X(M) throughput .099 .170 .214 .236 .246
R(M) response time 10.2 13.46 17.9 23.8 30.7
Q avg jobs in system 1.01  2.29 3.85 5.63 = 7.54 .
Utilizations:

5. = Channel .119 .20 .26 .28 .29

4 - Disk 2 - .089 .15 .19 .21 .22

3 - Disk 1 .207 .36 .45 .50 .52

2 - Swap .079 .14 .17 .19 .19

1 - CPU .395 .68 .86 .95 .98

The minimum response time occurs when only one terminal is
active (not shown in table); the response time for cne user is
simply the sum of the service times on each of the devices, or 9
seconds. As the terminal load increases, the throughput of the
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system rises rapidly at first and sloﬁer later on as the system
approaches its saturation limit. In both the batch and the inter-
active cases this limit is established by the CPU component of the
workload. At 4 CPU seconds per job, the throughput limit will be
1/4 = .25 jobs per second. At a load of 6 terminals the through-
put is rougnly 86% of this limit. Response time is roughly twice
what it would be on a dedicated system. Adding more terminals
will make respoﬁse time worse with little gain in throughput.

A comparison of the interactive and batch cases raises an

interesting question:

At a terminal load of 4 users there is an average of 2,29
terminal users in the central system .and the throughput is .170
jobs per second. ‘This is less than the .172 jobs per second
throughput ¢: :he batch system with two jobs active. One might
have expected that with more jobs active (2.29 is greater than 2),
that the system throughput would be greater, not less, I don't

know why this is so,
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Interactive Model With Load Dependent Central Server

In the tutorial Denning and Buzen point out that the central
system portion of an interactive system can be modeled as a single
server with a load dependent service time. The article does not
describe the algorithm for computing the performance quantities,
but it is a simple variation on the interactive algorithm present-
ed in the previéus section. For the load dependent central ser-
ver, the matrix L can be viewed as a simple one column matrix; the
single column represents'the single load dependent éerver. The
service time of the central system under a given constant load of
n jobs, S(n), is equal to the reciprocal of the throughput for a
system with n jobs and the terminal visit shorted out.

=2
X{n)
One can think of such a system as a batch system with n jcbs and

S(n)

use the Batch HST-6 or Batch LDS-5 programs, as appropriate, to
calculate the schedule of load dependent service times.

For a system with M terminals successive elements h{(m) of

the single column matrix h are computed by the following recursive

formula:
h(m) = 1 + m S(M«m+;) h(m-1)
where:
h(0) = 1
m is stepped from 1 up to M
Z is the think time
8(n) = service time with n jobs active.
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Note: The recursion takes the service time schedule in the
reverse order to increasing m. That is, S(M) is the first service
time in the recursion, S(l1) is the last.

At the end of the recursion H(M) is found. A second pass of
the recursion is made with a terminal load of (M~1) terminals to |
" find H(M~-1). This value H(M-1) is not the same as the value of
h(m-1) .found on the previous pass of the recursion. H(M-1)
considers the service times S(M-1l) thru S(l1) in its recursiou.

The h(m-~1) of the previous recursion used S(M) thru S(2). The two
values H{(M) and H(M-1) are used to find the following performance
quantities: ’

System idle P(0) = H(M)
Throughput =M . HM-1)
_ X (M) z H (M)
Response time M
R RM) = sy~ 2
Mean queue length Q0 =M~ Z X(M)

Also, starting from the‘value for P(o) found above, one can
find the probability, P(n), of there being n jobs in the system
from the following recursion:

P(ny = WMD) SO ppoyy T

The program for computing the performance quantities for an
interactive system with a load dependent central server is called
Interactive LDCS~1. The program implements the algorithm and com-
putes the principal performance quantities described above, Due
to lack of sufficient program storage on the SR-52 the recursion
for calculating p(n) has not been included in Interactive LDCS-1.
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Also due to register storage limitations no more than eleven
values of S(n) can be handled. This limits the effective degree
of multiprogramming of the system to serving a maximum of eleven
terminals simultaneously on the central systen.

Actually the limit éf eleven degrees of multiprogramming is
not a serious one because in most real systems the throughput
changes attributable to operating above the degree of multi-
programming of eleven are usually so slight and imprcbable of
occurrence that they can be neglected.

The Interactive LDCS-1 progran cffers an additional para-
meter setting called the multiprogramming limit, N. In some real
systems the size of main memory or possible operating system para-
meters may limit the number of ccncurrent jobs that the system
will consider ready for execution. When the level of multi- _
programming is set to N the program will consider the service time
of the system to be a constant S(N) for loads greater than or
equal to N, .

The rationale for modeling a fixed level of multiprogramming
in this manner is treated in the article by Chandy and Sauer [4]
on approximate methods. This is an approximation by use of flow
equivalent methods for passive elements of the system., The pas-
sive element in this case is memory which restricts the multi-
programming to some level n which is less than the total terminal
population m. The system has been collapsed from a multiple de-
vice system to an equivalent load dependent single server with a
schedule of service times S(N). For example, by only considering
rates 5(1), S(2), S(3) and then uéing S(3) instead of S(4), S(S):
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eeees S(m), one is effectively limiting multiprogramming to level
3. That is to say the "improved"” service times due to multi-
programming at levels higher than three are denied by setting them
to S(3).

The following points cover inputs, outputs, and controls for

the program.,

Inputs to the model

think time

2
number of terminals M
° multiprogramming limit N
o load index n
(] - load dependent service time S{n)
Qutputs in order of presentation are
o number of terminals | : M
0 the matrix constant for M H(M)
@ - system idle P(0) .
] the matrix constant for M-l : H(M-1
® system throughput ‘ X (M)
° ' response time ) R (M)
~ mean number in system Q

99 indicating end of output cycle

Input Controls: Z, M, N and RUN

These three controls are located on function keys A, B, and

C respectively, Depressing the key interrupts the program and
causes the current value of the variable to be displayed.
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] insert a new value if required

L] depress RUN to confirm your input action

Input Contols n, S(n) and RUN

. Punction key D is labelled n, S(n) and is used with RUN to
enter the schedule of load dependent se;vice times S(N).

) depress function key D
‘'value n. is auto incremented and displayed

o enter different value of n if desired
o depress RUN
service time, S{n), is displayed
o enter different service time if desired
® depress run to confirm
[ répeat until all values of S(n) are entered
Execution Controls - EXEC, RUN
EXEC Executes the program starting with an init-

ialization of all required registers. The
program will run until results are to be
presented for a load of M terminals, EXEC is

on function key E.

RUN The program halts and displays its outputs in
the preset order indicated above. RUN is
used for two purposes:

l. to obtain the next display in the cycle
2. at the end of the output cycle depressing
RUN will continue the operation increasing
the load to M + 1 without having to start
from scratch.



Note: Computation of the performance parameters, except for the
case where terminal load M=1, requires two consecutive passes
through the recursive formula. On the first pass the terminal
load should be set at M-l and run through the complete output
¢ycle. [On this "primer pass" oniy H(M-1) and P(0) are guaranteed
to be correct. H(M-1) is saved for the next pass.] After the "99"
display at end of the cycle depresé RUN. This will increment the '
terminal load from M-1 to M and cause the second pass through the
recursive formula. The output displays will be correct for load
M.

Depressing RUN at the end of any cycle executes the next
pass and provides results for the next higher terminal load:
i.e" M"‘l, M+2, s 00 etC.

Once again we turn to the sample problem in Figure 3. We
are interested in studying the performance of the interactive
system over a range of terminal loads from 2 through 10. We,
therefore, will need the schedule of load dependent service times
for the corresponding batch system with the number of jobs equal
to 1 through 10, While we are at it, we might as well get the
schedule of S(n) for the batch system variation in which the CPU
had a lcad dependent service time. (Recall that this will lead to
reduced throughput at higher multiprogramming levels,) Table IV
shows the load dependent central server schedules, S(n), for the
two batch systems. ‘
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Table 1V
Load Dependent Central Server Schedules

Constant CPU Load Dependent CPU
N Jobs Y:CPU System S(n){ Y(1l,n) CPU System S(n)

1l 4 sec 9.0 sec 4 sec 9.0 sec

2 4 5.79 ' 4 ' 5.79

3 4 4.83 5 ) 5.13

4 4 4,41 6 5.28

5 4 4.21 7 " 5.93

6 4 4.11 8 6.91

7 4 4,05 9 _ . 8.04
8 T4 4,03 10 9.19

9 4 4.02 11 10.32

10 4

4.01 12 -11.42

In addition to being a schedule of S(n) inputs for the
model, Table IV is interesting in its own right; The columns
headed by Constant CPU show the CPU time and S(n) from using Batch
HST-6. Similar columns under Load Dependent CPU were calculated
using Batch LDS-5. In both cases the CPU is the heaviest com-
ponent of the work load and the System Service time S(n) ap-
proaches it asyrmptotically. What's interesting in the load de-
pendent case is that S(n) dips below the CPU service time and then
approaches it from that vantage point. It is also evident from
the table that increasing the multiprogramming level in the con-
stant CP!] case beyond about four jobs will have very little '
payoff. For the load dependent CPU going beyond a level of three
jobs is expected to hurt performance. ' ’
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Table V
Interactive LDCS-1 Results

Terminals M 2 4 3 8 10
H (M) 3.84 19.55 139.7 1450 21913
System Idle P, .260 .051 .007 L0007  ,00004
H(M-1) 1.9 8.34  50.0 429 5383
Throughput X (M) .099 .170 .214 .237 .246
Response Time R (M) 10.22 13.45 18.0 23.8 30.7
Number in System Q 1.01 . 2.29 3.85 5.63 7.54

Table V shows the results of running the program for the
cons :ant CPU case. Except for minor roundoff differences, due to
inserting S(N) to only three places, the results are the same as
previously indicated in Table IIYX. The results agree "exactly"
when all quantities are entered to the maximum precision allowed
by the calculator.

_ A much more interesting set of results is found by
examining the effects of multiprogramming level on the performance
of the system with the load dependent CPU. Multiprogramming
levels, N, of 1,2,3,4, were examined for terminal loads, M, of 1
through 10, Table VI records the resulting throughputs and
response times.



The best performance occurs at multiprogramming level 3,
the third column of the table. This was expected because S(N) was
a minimum at a load of 3. The rightmost column of the tahle shows
how poorly the system will perform if nd limits are placed on mul-
tiprogramming [i.e. the multiprogramming level N is made equal to
the number of terminals M]. Here the best throughvut is achieved
at 5 terminals active because it is not until this point that the

average number of juJs in the system get up to around 3.

Table VI

Throughput and Response Time With Load Dependent CPU

Multiprogramming Level-N

No of Terminals 1 2 3 4 M
1 Throughput .053 .053 .053 .053 .053

Response 9.0 9.0 9.0 9.0 9.0
2 X(M) .086 .099 .099 .099 .099
R(M) 13.3 10.2 10.2 10.2 10.2
3 X(M) .102 .133 .137 .137 .137

R (M) 19.3 12.5 11.9 11.9 11.9
4 X(M) .109 .155 .164 .163 .153
R (M) 26.7 15.8 14.4 14.5 14.5
5  X(M) .110 .166 .181 .178 .175
R (M) 35,2 20.1 17.6 18.0 18.5
6  X(M) .111 .170 .189 .186 L1712

R(M) . 44,0 25.2 21.7 22.3 25,1
7OK(M) .111 .172 .193 .188 .153

R (M) 53.0 30.7 . 26.2 27.2 35.4
8  X(M) J111 L1032 .194 .189" .132
R (M) 62.0 36.4 31.1 32.3 50.4
9 X(M) .111 .173 .195 .189 .113
R (M) 71.0 42.1 36.2 37.5 £9.6
10 X (M) .111 .173 .195 .189 .098

R (M) 80.0 47.9 41.3 42.8 91.6
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~ The results from this case study are graphically pre-
seauted in Figure 4 as a family of performance plots. Additional
multiprogramming levels not shown in the table have been added to
show how the throughput varies for the range 4 through 10. Also,
.to allow comparison with -a system which does not have the load
depend:nt cpu{ three additiocnal plots are shown as dashed lines in
the figyure. These three throdghput curves were generated using
the S(N) schedﬁle from Table IV labeled constant CPU.

There is a lot of information conveyed hy the figqure. A
few points will be made to illust.ate what can be learned. A sys-
tem without a load dependent CPU can be viewed as-an "ideal
system" because it does not require more system overhead per job
to manag* 10 jobs than to ménage 2 jobs. The first four points
discuss performance of this ideal sys:em.

Y. The uppermost dashed curve labeled N=10 shows the
"best" possible throcughput for the ideal system.
There is no "extra overhead work" which was modeled
as a load dependent CPU. There is no practical
limit on multiproaramming with the limit s2t at 10.
The system sa“uratzs at a throughput of .25 when the
limiting device, the CPU, reaches 100% busy.

2. Dashed curves labeled N=4 and N=3 indicate how
throughput would drop due to limiting the level of
multiprogramming., Main memory size is often such a

limiter of multiprogramming.

37



SO ITOCOR I~

.26 1

.24

«22

.18 1

016 h

.14

.12

.10

.08

.06

.04

.02

,00

Figure 4 _
Throughput vs Terminal Load
with Various Levels of Multiprogramming

r —7 L T Y y v r Y r

0 2 3 4 5 6 7 8 9 10 11 12
- Terminal Load
Key: =---- TJIdeal System (Constant CPU)
Realistic System (Load Dependent CPU) Q@&?’
N Multiprogramming Level OPPOIA:/}CP
38 O 00210
Le



3. Solid curves N=1,1 and WN=2,2 show the thrdughput
for levels 1 and 2 for both the ideal system and
~the system with a load dependent CPU. Recall that
the load dependent function didn't start increasing
‘the CPU load until 3 jobs were in the systém;

4. The iarge difference between N=1 and N=10 dashed
shows the expected gzins dué to multiprogramming
for the "ideal" system. Forty-four percent of the
potential gain is achieved by going from level 1 to
2. [Seventy percent by going from 1 to 3, 84% for-
going from 1 to. 4.]

In most real systems there is some amount of extra overQ
head involved with operating at higher'levels of multiproyram-
ming. Increaced paging activity or increased swapping is such a
forh of load dependent behavior which could result in higher CPU
activity for storage managment and pagé/swap support. The solid
lines in this figure show a hypothetical system which is exhibit-
ing realistic system behavior. The distinguishing character of
the realistic throughput curve is that things get better up to a
point where saturation occurs and then, if the load is increased,
the throughput will actually get worse. Four points are made
about the "hypotheticai realistic" system. ‘A

1. The solid plot for N=3 shows the best throughput
for the system. The service time, S(N), with three
jobs in the system is at its lowest so throughput
will be best if multiprooramming is at level 3.
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2. The difference between the solid plot N=3 and the
‘dashed plot N=3 indicates the difference between an
ideal system and its "realistic" counterpart.

3. 'Increasing the multiprogramming level from 3 to 4
hurts performance a little., The difference between

the ideal and realistic systems has increased.

4, Incfeasing the multiprogramming level to five or
beyond actually results in lowering the throughput.
In all of these cases the throughput approaches a
limit which is 1 - S(N)."

This is an example of paradoxical behavior which occurs
from time to time. Conventional wisdom says increasing the multi-
programming level is good. Conventional wisdom also says that the
benefits of increased multiprogramming are progressively diminish-
ing, Conventibnal wisdom does not predict that throughput will
drop with increased multiprogramming, as this case seems to indi-
cate., Paradoxically conventional wisdom is correct, if we are
trying to distinguish causal realtionships. The root causé of the
poor performance is the increased overhead for storage management,
modeled in this case by a load dependent CPU. Incrasing the mul-
tiprogramming level merely allows the storage management problem
to manifest itself. o
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SUMMARY

Starting from the tutorial by Denning and Buzen [and that
is an excellent place for anyone to start] the algorithms for
handling closed networks with a single job class were adapted for
use on the SR-52 programmable calculator., Along the way it was
found that by slightly altering the Buzen algorithm to process the
G and H matrices row by row instead of column by column} that six
devices and an unlimited job/terminal population could be handled
on the SR-%2, Techniques were also introduced for handling a
simple load dependent server and for studyihg interactive systems

with fixed multiprogramming limits.

The paper provides 1iétings of the four programs and a
sample case study which can be replicated on the SR-52,

Next on the agenda is conversion to the TI-59, addiii.nal

load dependent servers, and some simple aids for approximating
systems with parallel tasks.
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APPENDIX

PROGRAMS FOR THE SR-52
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2 SR-52

TITLE Batch HST-6 pace 1 oF > @
PROGRAMMER ___E. S. Herndon DATE _March 1980 Ccdmg Form
woc Jcooel kev Jcomments| Loc cone] key Jcomments] Loc jcope] key [comments] LaBELs
%2 LBL STO 0 AN-Jobs
E' Q1=0 8 kis Bk-devices
STO 0‘“’;52 7 STO used for c Yk-servict
1 7 ¢ jLoopr DRESUME
9 STO 080 2 0 |COUNT || EEXECUTE
°°ﬁ'7 IND General 0 DSZ=7 8 A
RCL Input ) 0 STO G Array B
1 Routine - {043 8 1 [POINTER |} ¢
9 - STO 9 o' ROW
. HLT  [Display 1 SET 055;97 0 0= EGENINPUT
0, IND  [Old Value 9 all STO {Y Array REGISTERS
T STO 1 7 1 |pointer | coLoOP
1 SAVE . LBL  [G(0,K) 8 - Pp=G(n,0) || oY,
9 - INEW SIN  lelements LBL 027y
. rtn VALUE SUM <1 090 o2l TAN a3 Yq
me?|27 LBL 1 + + 04 Y/.
A INPUT 9 1 05
7 N 058 7| IND SUM 06Y ¢
E’ ~jobs-~ STO 1 07N
HLT 1 End of %%, 9 o8k
00 LBL .9 |lnitial IND |G(n-1,k) | 09G(n,1)
B INPUT DSZ |Phase RCL 10 G(n, 2)
8 k o, SIN 1 1G(n ,3)
E' idevice no. LBL [Continue 9 12G(n,4)
- HLT D Row ’0%‘2 X X 13 G(n,5)
025137 LBL = Process 1 14 G(n, 6}
C 1 SUM 15 G(n-1,k)
RCL INPUT 055177 SUM n=n+l 1 16 n=Count
0 Yy 1 8 17 .Q T
8 6 %% inp | Yk 18 IND Yk
2 E' IND RCL @ iND, 1,6
HLT RCL | save 1 FLAGS
LBL Execute |9, 1 G(N,X) 8 | o
E 9 in = = 1
0 STO  |G(N-1,K) |0, IND 2 T
0% STO | n=0 1 for X(N) _ STO {6,k 3
1 - 5 CALC. TEXAS INSTRUMENTS ]
6 %7 RCL enmraten B
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SR-52

o

TiTLe___ Batch HST-6 pace._ 2 _oF. 2 v v
PROGRAMMER___E. S. Herndon DATE__March 1980 Coding, Forn
fioc Jooos]| key [commentsfLoc Jcooe] ke [comments| Loc fcope] kev  [comments|  LaBELS
000"2 1 RCL Outputs 0 A N-Jobs
9. 0 ) Bi~-devices
DSz END 040 s 8 k for 2 ¢ Yk-servicd
TAN | ROW? ' STO (LOOP HLT | Ok DRESUME
RCL _|Update 0 CONTROL[|®%s2 IND EEXECUTE
a1y 1 Q 0 RCL A
7 QD) , RCL  |DISPLAY 0 pe
+ 048 oy 1 "t 0 c
1 6 DSz D P Aw
) HLT | |cos e INPUT
%% X RCL 9 | ReEGISTERS
RCL _ 1 9 rggr %0 LLCOP
0 Y1 050162 7 HLT the end _—Y-l
1 HLT "Q," D next row | .2 Y,
X X RCL | ~ 0% 2 Noa Y,
e RCL 1 |Gn-1,K oY,
1 G(n-1,k) 5 05 Vs
5 0ss = 06 Yo
< "IND 07 N
— IND RCL 9% 08 k
1 132 RCL G(n,k) 1 09 G(n,1)
1 9 10 G{n,2)
9 e, HLT |"G(N,K)" 1Gn,3)
= = = 12G(n, 4)
sTo | Qfm HLT  "X(NY* (109 13 G6(n,5)
0%, 1 1/x 14 G(n,6)
7 HLT  ["S(N)" 15 GUi=1,k)
RCL 088 1/x 1 N
1 n L.BL Device 17 Q
6 COS  |ouTPUTS|H'",, 18 IND Y
muz - X Uk 1g IND l.c;k
RCL RCL - FLAGS
0 N 970 62 0 0 ]
' 0 1
= HLT | k" e N
0¥ INV IND T3
. !EPOS DONE? RCL TEXAS INSTRUMENTS ‘
D 075187 0 ENCURPORAILD
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‘SR-52

TITLE % Devices - Load Dependent PAGE 1 2 .
PROGRAMMER __E. S, Herndon __DATE_ March 1980 C@diﬁg Formn
LOC [CODEl KEY [COMMENTS|ILOC [CODE] KEY |COMMENTS| LOC |CODE| KEY |COMMENTS| LABELS
0902 LBL 1 1 |N=N+l AN Jobs
E' 7 Load 5 Bd-Devices
STO 0, E' 1At INFL IND CY ,-Servic
1 HLT RCL oB,L,1- |
9 General 1 INCR 08042 1 ISave EEXECUTE
005‘17 IND Input 8 9 G(N, K) A
RCL Routine E' STO in B
1 0% HLT 1 JGN-1,K) f ¢
) L.BL EXECUTE 4 ffor X(N) o
HLT E INITIAL 085;97 RCL €' INDR-1
o . IND 0 0 REGISTERS
5TO STO 8 0LOOP
1 90 s n=0 STO |LOOP oYy
9 0. | =d 027y
RTN 6 ’ 02 0 0a¥y
%2 LBL STO RCL | SET 0s 7,
A 0 1 Y110 0s Ve
7 N-JOBS  ||%%6 0 SET 6 |LoaD 05IND Tk
E' 8 ALL STO PEPENDENT? N
HLT STO  {G(n, k) ||%%07] 0 |FUNCTION 08 k
%2 LBL 1 ELEMENT$ 1 | B % G(n,l)
o B 9 TO RCL + 10 G(1,,0)
8 K 08, LBL 1 (n NG, 3)
E' SIN 1 5 12G(n,4) J
HLT 1 %2 - |- 13 G(n,5)
0% LBL SUM RCL 14 Gla=1,K) |
C 1 1 L) 15 n-counter
RCL " 9 7 |
0 ' IND . . g
8 STO %al Ny 18 .
" 1 E Yy B! 1F POS 19 LNDR 1,0
HLT 9 c FLAGS
LBL 070 62 DSZ | END X X 0
D SIN  JINITIAL RCL i
1 BASE LBL  [Continue | ''Ou| PR 2
0% . 6 » ROW 8 3
I~ £ 75 ! — TEX"’\S'J‘T’:?‘.T"%H?ENTS e 1
. HLT 187 SUM e
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S Devices-Load Dependent

’ 2
PAGE

2 SR-592

TITLE °
PROGRAMMER __E. S. Herndon DATE __March 1980 Coding Form
LOC [CODE|. KEY [COMMENTSI| LOC |{CODE| KEY [COMMENTS) LOC |[CODE{ KEY |COMMENTS LABELS
12 = Add to 1 | GIN,K) HLT "GN, K" || A
SUM Base 9 = 8
0 Y1 . 040152 Dsz HLT XN c
1 TAN 1/x 0
LBL RCL. [TESDONE[[®%g,1 = |HLT |"s(N)* f e
00 ~ ;
57 ! 1 n 1/x A
8 5 LBL 8
STO 08 s - - COS |DEVICES] ¢
1 G Array RCL X o
9 Poinier 0 N 085 07 ( £
010‘22 0 7 RCL REGISTERS
STO = 0 00
3 050
0 Y Array 162 INV 0 ot
6 Pointer IFPOS | CONT HLT K" 02
‘ 0 [G=I,0) b [ROWs |0, IND 03
015 ;
o7 LBL RCL RCL 04
TAN 1 0 05
+ + %67 5 0 Tk 06
1 HLT N ) 07
SUM RCL 09 x 08
= 1 0 HLT U” 09
19 1 IND 10
IND 060‘72 HLT "Ylv" RCL "
RCL G(N-1,k) RCL 0 12
1 0 "%%2 0 "’
a7 9 8 k for DSz 1"
X X STO dsz COSs 15
1 %% 0 |CONTROL - 16
SUM 0 L 9 END 17
| 0 KL ENIEE r
030 42 6 Yy 1 G(n-1,k) _HLT 19
IND . 4 D* NEXT FLAGS
~ Q70 :
RCL 182 T ROW 0 B
0 1
6 IND Mo . —
5 RCL |
L IND o ,h...l..._. TEXAS INSTRUMENTS |4 ]
B STO 0 w67 9 i~ nm'-::a-:\n »
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SR-52

o

R . K5
TITLE Interactive HST -6 pace ! 2 , J o]
PROGRAMMER ___E. S. Herndon DATE _March 1980 Coding Form
LOC |CODE|. KEY . [COMMENTS| LOC {CODE| KEY |COMMENTS| LOC [CODE| KEY [COMMENTS| LABELS
h2 LBL ‘ LBL |Initial 5 AM-Jobs
E* E ) RCL Bk-device
5TO 040152 0 0 K c Yk~servica
1 STO | m=0 8 is OZ-think |
9  |GENERAL 1 ’ 080 g2 STO | used € EXECUTE
005 5 IND INPUT 6 0 for A
RCL  [ROUTINE 7 “floop 8
i 0“5,57 STO 0 control c
9 [¢] set all 7 STO O Row
HLT 0 harray |95, 1 set e IND 1
e IND 9 |clements 8 7 REGISTERS
STO STO to 1 8 and 00 loop
1 050 52 1 570 |hm,) Jlor ¥y
9 9 1 POINTERY 02 12
090
RTN L3L 202 9 03 ¥y
o1 LBL  |INPUT SIN 1 (m-1,0) | 04 Y4
A 1 LBL 05 Vg
7 M e IND TAN os Yg
E' TERMINALS STO + + 07 M
5
HLT 1 09 207 1 08 k
a2 LBL 9 SUM 09 h(m, 1)
B, SUM h(m-1,k) |l 19 h(m,2)
8 K-deviced *0,, 1 9 " a(m,2) |
E' 9 END IND 12 h(a, 4)
HLT DSZ | INITIAL ||',, RCL 13 h(mn,5)
025137 LBL SIN 1 14ah{m,6)
C LBL ROW 9 15 h(m~1,k)
RCL 0837 D' PROCESY X X 16 mcounter
0 1 1 v 7
8 Ty SUM  |memsl |5, SUM ETT
030 - : . :
142 E’ Service 1 A YIND i,h
HLT _ | Time 6 , Tk FLAGS |
LBL 1%, IND  |F(m-1,k) L0
D { RCL | Saved ~ ‘
1 z 1 frer X %l 1
e 7 think 9 _ jeale L4 {8 = 3
e e G STO _|in R15_ TEXAS INSTRUMENTS [ .
I{LT 187 I N L-A ) St AN D J_ B i
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Interactive HST-6

SR-52

o
. 2 2 .
TITLE PAGE
PROGRAMMER E. 5. Herndon pare,_March 1980 Ccding Form@
LOC |CODE} - KEY |[COMMENTS|I LOC {CODE] KEY [COMMENTS|H LOC |[CODE| KEY {COMMENTS LABELS
12 X X B B ) k AM-Jobs
RCL RCL 8 is loop 8 k~device
1 m 040 c2 1 z STO |control €Yy service
5 7 0 |for 0 7_Think__+
. . 080 U —
L > X X 192 0 k EEXECUTE
5 7 RCL RCL RCL A
1 z 1 |h(m-1,d o | xm B
14! .
7 %3e7 5 7 ¢
z z - LBL | Yy 0 Row
"IND HLT [ xonr %85, cos | Loop E'IND I
o1 2 STO  |h(m,k) STO X REGISTERS
-1 0 ( 00 loop
050
9 162 7 RCL 01 Yl
DSZ |test.end 1/x 1/x (M) 0 02 Y2
TAN row X © X 00 0 03 Y3
015 .
127 RCL test RCL HLT vk 0sY,
1 done 1 m IND 05 Ye
6 %67 6 RCL 066
I ) e - 0 07 M, X(M)
: 095
RCL RCL - 0 08 k
020 2 0 1 z ) 09 h(m,1)
7 7 - 10 h(m,2)
= until oee . = _ HLT " ;" 11 h(m,3)
INV mzM HLT "ROMO" IND : 12 h(m,4)
1 F POS| continue RCL 02 RCL 13 h(m,5)
028 D’ rows 1 0 14 h(m,6)
RCL 6 m 0 15 h(m-1,k)
1 0(:‘».‘3‘_,7 - - DSZ 1€ moounter
6 "m" RCL COS w2
- o5 — -
HLT 1 Z 02” = 18 IND \k
N X X 7 9 19 IND I,h
IND X X 9 FLAGS
N 0
RCL 07062 RCL HLT 0
1 "h(m,d)" 0 X(M) D' NEXT 1
5 - :
9 % ROW 2
05 HLT = 3
1/x_| HLT |»F* || Texas INsTRUMENTS |_°
HLT "P(O)" 075‘87 RCL PN ORIORNS L
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. °
TITLE Interactive LDCS pace_ L 2 SR"EQ

O »
PROGRAMMER E. S. Herndon pATE _March 1980 Codmg Form
Loc [cone| KeY [COMMENTS| LOC [CODE{ KEY [COMMENTS{ LOC [CODE[ KEY. [COMMENTS| LABELS
%2 LBL ' 1 Display RCL A 7-Think
E' - 9 - inextl 1 (m-1) B M-Load
STO 090y = to set 5 CN-Multiprog
1 . HLT | s() = ‘ olsh) - L
9 E' 090 s STO | Set EEXECUTE
oo IND HLT _ 1 S(L) A
RCL |GENERAL LBL | MAIN 9 B’
1 INPUT  Jj0%8 E EXEC - |TEST ¢ CONT
9 ROUTINE 0 |INITIALIZE RCL | IF N ONEXT STH
HLT : ) STO 083 47 1 Exceeded || £ INPUT
o, IND 1 m=0 4 REGISTERS
STD . 5 ] . = oo toops
050 3
1 )62 1 INV v 01 S
9 STO 1=h{0) 1F POS 02 S(2)
RTN 1 : 09 12 ok IF SO 03 S(3)
015;27 LBL ’ 8 RCL '} Use 04
A RCL 1 05
. 0355 (N o
! Z e? 1 4 5S¢y 1% ]
3 6 M STO 07
X ’ 035 R
E STO %1 1 08
020132 HLT 0 Loop=M 9 03
LBL 0 LBL  Kontinue [ 10
B : 95012 - c "os(1)
1 L 1 , ! | M=M+1 12 (0
I Ev——
6 = %2 SUM 12 7 Think
a7 E' INV_ | 1F LOAD 1 18N Multi
HLT I[F ZROf M= 5 15 m-countr
LBL 983, D’ 1 | + 1+ 16 -l oad
C 1 SET i IND 7h (n-1)
1 N STO |HM-1) [, RCL S(L) 18 wmi
0% 2 4 [Multinrog 1 =1 ‘, 1 1w IND L S
i | 9 FLAGS
HLT ) 070 s [Br MAIN w'{_ .x 0
LBL D’ ENTRY || RCL 1
SN NN RS NS S
D RCL T 1_ M ? )
035y 1 1, s 1 L 1 5 3
' l - 1
* . 6 i TEXAS INSTRUMENTS iy -
RCL o5 | T T e i
187 i _




Interactive LDCS

Mo
TITLE : PAGE OF ) {'ﬂ@
PROGRAMMER __E- 5. Herndci DATE March 1980 Codmg Form g
LOC KEY COMMENTS[_LOC CODE{ KEY {COMMENTS} LOC LABELS
- I -
o X 2 ) A
RCL 1/x B
1 h(m) %2 X ¢
& RCL o +
: 080
: 1 m 192 €
" RCL 5 A
1 VA - 8’
045 ~ .
3 5 RCL c
= 1 Z o
. 085 ;
STO 3 o7 E
0% 22 1 = REGISTERS
P g RO
as0
DSZ o2 RCL
D' 1
RCL__ |OUTPUTS 5 ’ %0z
018
127 1 - __
S RCL .
HLT | 05867 1
]
X .3
035
RCL X ’20
020
132 1 RCL Wy e
8 1 X(M)
S ) 060
HLT  'h(M) 72 2
1/% -
HLT vpo” HLT nQu IO()212
a7 < RCL
RCL 1 h(m)
065
1 2 177 8 -y
~ 3 STO | h(m-1) ]
X 1 % !
03 RCL 7
1 9 S
7 070 g2 9 99"
HLT | "h(m-D" HLT LEND L
- 110 TP
= 1 . 222 .
035 -
ez HLT  {xewy SUM I
sSTo [ 1 increment | Texas INSTRUMENTS [l _
i 075, 6 I )
— 87 ji. -
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