SPECIAL REPORT ### A PROGRAM FOR TWO-WAY ANOVA AND DUNCAN'S NEW MULTIPLE-RANGE TEST ON A SMALL, PROGRAMMABLE CALCULATOR Eric M. Johnson and Kenneth A. Sorensen Department of Entomology North Carolina State University Raleigh, NC 27650 Nelson (1 & A Tests, 1:4-9) explained the importance of the role of statistics in <u>Insecticide and Acaricide Tests</u>. Since then, statistical analysis of data included in the reports has become the rule rather than the exception. C. W. Averre's (1 & A Tests, 2:7-10) contribution of a program for a two-way analysis of variance on a Texas Instrument SR52 calculator was instrumental in this increase. Since his publication, the SR52 has been replaced by the Ti programmable 59. The Ti59 is similar to the SR52 in that programs can e stored on magnetic cards. However, the Ti59 has the capacity to program up to 960 steps (compared with the SR52's 223) and solid state software library modules are available that can be inserted in the back of the calculator. The Ti59 lists for \$237.50 but is available from many sources for under \$200. The modules list for \$40. the same printer used with the SR52 may be used with the Ti59. The program below uses one magnetic card and the Applied Statistics Module. It is designed to be used with the PC100 printer and includes the following features: transformations, data conversions, actual and transformed data mean printout, printout of degrees of freedom (i.e. error, treatments, and replicates), probability of a greater F value, and Least Significant Range values one advantage of this program is that it needs to be entered only once into the calculator to run any number of analyses on different data sets. However, the program is limited to an experimental design having a sum total number of treatments and replicates less than 16. The advantage of this program is its portability, allowing data analysis away from the office. It is inexpensive, and more expedient than using computers in large computer centers. Operation time for a complete analysis of data from an experiment with four replicates and six-eight treatments is approximately ten minutes, including data input. # USERS' DIRECTIONS (for the TI Programmable 59 calculator program for two-way ANOVA and Duncan's New Multiple Range Test) - 1. Place Applied Statistics Solid State Software module into calculator. (Personal Programming; 1977) - 2. Read magnetic card: check partitioning and data bank to be read. (Personal Programming; 1977) - 3. Initialize program. PRESS: E. - 4. Enter conversion factor. (If none is needed, go to step 5.) PRESS: \underline{E} . - 5. Enter number of treatments. PRESS: B. (Number of treatments is printed.) - 6. Enter number of replicates. PRESS: C. (Number of replicates is printed.) - 7. Enter data by treatment. PRESS: A. When all data is entered for each treatment, PRESS: R/S. (See step 14 if data transformation is desired.) (Actual and transformed means are printed.) - 8. Calculate data mean and standard deviation. PRESS: $\underline{0}$. (Data mean and standard deviation are printed.) - 9. Calculate Sum of Squares for treatments, replicates, and total. PRESS: A. (SS trts, SS reps, and SS total are printed.) - 10. Calculate F value for treatments, degrees of freedom replicates, degrees of freedom error and probability of significant differences for replicates. PRESS: B. (F reps, df rep, df error, and PR F rep F are printed.) - 11. Calculate F value for treatments, degrees of freedom of freedom for treatments, degrees of freedom error, and probability of significant difference for treatments. PRESS: C. (F trts, df trts, df error, and PR F trt F are printed.) - 12. Enter t value from table. PRESS: STO 87. - 13. Enter Significant Studentized Range values and calculate Least Significant Range values. PRESS: D. - 14. TRANSFORMATIONS¹: Locations 040 through 047 have been reserved for entering appropriate keys into program for various transformations. To enter transformations proceed as follows: ¹ Modified from Averre (<u>I & A Tests</u>, 2:7-10). The use of specific names in this publication does not imply endorsement of the products or services named or criticism of similar ones mentioned. #### A. PRESS: GTO 040 LRN B. Select the desired transformation (see below) and key in the sequence: $\frac{\text{do not exceed eight entries}}{\text{do not exceed eight entries}}$ not counting the <u>LRN</u>, <u>INV</u> or <u>2nd</u> Keys. #### 1. Linear transformation or coding. #### II. Square root transformation $$\sqrt{X}$$: \sqrt{X} LRN (Used when numbers vary from 10 to 100) \sqrt{X} + 0.5 : + .5 = \sqrt{X} LRN (Used when numbers include many values between 10 and 0) #### III. Logarithmic transformation log X : 2nd log LRN $\log X + 1 : + 1 = 2nd \log LRN$ (Used when same numbers are under 10) #### IV. Arcsin or angular transformation arcsin $$\sqrt{X + 100}$$ \pm 100 = \sqrt{X} INV 2nd SIN LRN 15. For analysis of another data set go to step 3. #### SAMPLE PRINTOUT Below is a sample printout for the following data using the angular transformation | | | Replicate | | | | | | | |-----------------------|----------------|---------------------------------------|----------------------------|--------------|---|--|--|--| | reatment | | 1 | 2 | 3 | 33.4 | | | | | A | | 36.2 | 31.7 | 29.8 | | | | | | B
C | | 29.9
22.6 | 30.9
27.1 | 27.7
26.1 | 28.8
23.4 | | | | | D | | 15.2 | 17.2 | 19.0 | | | | | | Check | | 17.3 | 14.8 | 20.6
16.1 | 18.5 | | | | | PRINTOUT | | COMMENTS | PRINTOUT | | COMMENTS | | | | | 5
4 | | no. treatment
no. replicates | 29.34017961
19.31089189 | | Grand Mean Trans. Data
Std. Dev. Trans. Data | | | | | 36.2 | | data value trt A | 386.2178378 | | Total Sum of Squares | | | | | 36.98919175 | | transformed value | .4800618363
356.0452809 | | Column Sum of Squares
Row Sum of Squares | | | | | 31.7 | | data value trt A | F REP | | | | | | | 34.26543131 | | transformed value | .0646711346 | | F reps | | | | | 29.8 | | data value trt A | 3 | | df reps | | | | | 33.08576142 | | transformed value | 12 | | df error | | | | | 33.4
35.30489381 | | data value trt A
transformed value | .9775564913 | | PR (F rep F) | | | | | 70.775 | <u> </u> | | | | F TRT | | | | | 32.775
34.91131957 | X TRT
X TSF | Mean trt A
Mean of transf. data | 35.97325992
4 | | F trts
dt trts | | | | | 74.51(1)15/ | 7 131 | medit of fiditists udid | 12 | | df error | | | | | 29.9 | | data value trt B | | | | | | | | 33.14836609 | | transformed value | .0000013601 | 2 | PR (F trt F) | | | | | REST | | | 2.167803681
2.276193865 | 2 | Least
Significant | | | | | OF DATA AND | | | 2.276193663 | 4 | Range | | | | | MEAN VALUES | | ETC. | 2.362906012 | 5 | Values | | | | ## PROGRAM SEQUENCE FOR TI Programmable 59 CALCULATOR FOR TWO-WAY ANOVA, DUNCAN'S NEW MULTIPLE RANGE TEST, AND OTHER STATISTICS | Loc | Keys | | | | | Comments | |---|---|--|---|--|--|---| | 000
005
010
015 | LBL
87
LBL
LBL | E
PGM
E'
B | CMS
06
STO
PGM | 1
E
87
06 | STO
RTN
RTN
B | clear calculator of previous inputs enter conversion enter no. of trts | | 020
021
026
031
036
041
046
051 | ETN
LBL
9
LBL
NOP
NOP
NOP
06 | C
OP
A
PRT
NOP
NOP
A
R/S | PGM
17
X
SUM
NOP
SUM
ADV | 06
ADV
RCL
89
NOP
88
RTN | E RTN
87
NOP
NOP
PGM | enter no. of reps repartion enter data X conversion print actual data transformation print transformed data | | 055
060
065
070
075
080
085
090
095 | IBL
7
OP
RCL
0
3
1
+ 06
RTN | 875
3
04
02
STO
7
OP
RCL
ADV | 6
5
RCL
= 89
3
04
02
0 | 7
89
0P
6
6
RCL
STO | 3
7
• 06
7
2
88
OP
88 | calculate, label, and print actual treatment means and transformed treatment means. | | 101 LE
106 PC
110 LE
115 PC
120 B | PGM
LBL
PGM
B' | D
06
A'
16
RTN | PGM
C'
PGM
B | 06
RTN
16
PGM | <u>B'</u>
<u>A</u>
16 | calculate and print :2
calculate and print S ²
calculate and print SS
total, SS reps, and SS
trts. | | 122
127
132
137
142
147 | DBL
0
3
05
84
85 | B'
3
3
PGM
PGM
PGM | 2
5
OP
16
16
16 | 1
04
C
D
R/S | 0
7
<u>0P</u>
<u>STO</u>
<u>STO</u>
STO | calculate, label, and print
F reps, df reps, df error | | 152
157
162
167
171 | 84
85
88
A B C LB
0 3 05 | RCL
RCL
RCL
PRT | 85
88
84 | PGM
PGM
PGM
RTN | 22
22
22 | calculate Probability of F calc F, print. | | 176
181
186
191
196 | 0
3
05
84
85
88 | C'
3
7
PGM
PGM
PGM | 2
7
OP
16
16 | 1
3
04
C'
D
R/s | 0
5
0P
STO
STO
STO | calculate, label, and print
F trts, df trts, df error | | 201
206
211
216
221
226 | 88
LBL
08
RCL
88
2 | GTO
D'
10
+ | STO
RCL
RCL | 53
86
09
+
02
X
86 | RCL
X
RCL | enter Significant Studentized
Ranges for desired level | | 231
236 | 87
PRT | X
RTN | RCL | <u>\$6</u> | = | calculate and reprint Least
Significant Range values |