

LRN

Programming my TI

TI-58 / TI-58C / TI-59

Pierre Houbert

LRN Programming my TI

 2

LRN Programming my TI

 3

Introduction

The programmable calculators Texas Instruments TI58 and TI59

appeared in 1977, followed in 1979 by the TI58C.

Based on an AOS system (direct algebraic notation), they were

programmable with a specific language named, in French, LMS

(for specialized machine language).

Some users more saw in these machines their side “scientific

calculator” (or mathematical) because of their numerous

mathematical and statistical functions, the others adopted these

calculators as "pocket computers" and even invented, in these

years of rising micro-computing, the term of "pico-computing".

We shall approach here the side programmable calculator and

would try to discover this language, at first sight rudimentary and

simplistic, which was nevertheless able to fascinate a lot of

followers.

Indeed, this language turned out to be really attractive because

enough complete for elaborating complex programs. The field of

the possible applications even allowed a professional use in a lot

of domains.

The modules of marketed programs concerned the mathematics,

the navigation, the electric engineering, the agriculture, the

financial investment, the stock management and many other

activities without forgetting the games.

The only limits were due to the physical constraints of these

machines: no alphanumeric display (but paper printing for texts),

LRN Programming my TI

 4

little memory, no possibility to save programs or data (magnetic

cards only for the TI59).

Then why to be interested, today, in the era of "smart phones"

and other "tablets", on these ancestral machines and this

language of formerly ?

For the same reason which makes that in the age of space

shuttles, high speed trains, and other fast machines, our children,

and our grandchildren continue to want to learn to make of the

“velocipede” : for the pleasure !

Today some emulators of TI exist on diverse operating systems

(MS DOS, Windows, Android, Pocket PC) and allow to find this

particular pleasure to program with a such language.

LRN Programming my TI

 5

First program

LRN Programming my TI

 6

LRN Programming my TI

 7

First steps

To start with, let us observe the keyboard of our calculator.

The first key which we shall approach is the key .

It is going to allow us to reach the "second" function of a key, so

to obtain Π (Pi) we have to use the second function of the key

.

LRN Programming my TI

 8

Such,

The sequence of keys will give 3.14159265359

To calculate the circumference of a circle of 4 inches of radius, it

is necessary to make 4 x 2 x Π = and thus type :

We can make a first program allowing to calculate the

circumference of a circle for any value of the radius...

This program will be like this kind :

● input number

● Multiply by 2

● Multiply by Pi

● display result

Number input will be made with keyboard, then it will be

necessary to launch the execution of the program which will stop,

displaying the result.

To launch the program (and stop) it, we shall use the key (and

the instruction) which means Run / Stop.

Our program will thus be like that :

LRN Programming my TI

 9

Enter the program

To enter a program, we have to choose the “program mode”

using the key (Learn).

When we press this key , the display changes and shows two

sets of numbers separated by a space.

The first group, consisting of three digits represents the

instruction address (we will say "step" of program), and the

second group, composed of two digits, is the instruction code.

Each instruction represented on the keyboard has a two-digit

code (00 through 99) and our program

could be written

65 02 65 89 95 91

since the respective codes are

● 65 for

● 02 for

● 65 for

● 89 for

● 95 for

● 91 for

LRN Programming my TI

 10

To switch back to "calculator mode", and for exit from "program

mode", we press .

Before introducing our program, we will ensure that no other

program is in memory by erasing program memory with CP

obtained pressing (Clear Program).

If we go back to programming mode by pressing , we are on

step 000 with 00 as instruction code.

When we press , the step 001 is shown with 00 as instruction

code.

We press , then , then , then , then .

According to our program entry, we can see the steps of program

incremented for a positioning on the step of the following

instruction to be entered.

To verify our entry, we have two solutions: we have either to

"walk" in our program to display the successive steps, or go out

of the programming mode (with) and print our program.

LRN Programming my TI

 11

Let us walk…

To verify our entry, we can “go back up” in our program by

means of .

Every pressing on , makes us "go back up" of one step and

we see displaying the address of the step and the code of the

instruction :

 display 005 91 then 004 95 then 003 89 then

 002 65 then 001 02 then 000 65.

We can also "come down" in our program by means of .

 display 001 02, then 002 65, then 003 89 then

 004 95 then 005 91.

We press on to come back in “calculator mode”.

We left the programming mode while the pointer of step was on

the step 005.

If we press again on to go back, in program mode, it’s step

005 which is displaying..

If we tried to launch the program, nothing would happen because

the execution pointer is positioned on the stop command.

To return, in "calculator mode", you must press then

(Reset) to bring the pointer to step 000.

LRN Programming my TI

 12

For checking the program, we are going to print it by using LST

()

On the printer, we obtain :

The paper printing gives us the address (step) of the instruction,

its code and also its translation.

LRN Programming my TI

 13

First test

We can now test our program.

It is necessary to :

● return the pointer to 000 :

● enter a radius : for example

● launch the program :

and we get 157,0796327

The use could be improved by avoiding having to use keys such

as and .

Indeed, the calculator possesses function keys (A, B, C, D, E)

who could be useful.

We are thus going to use the notion of "label".

To modify our program, we return the pointer to the address 000

with , then toggle in programming mode with .

We are on the step 000 before which we are going to insert 2

lines by using INS twice :

We can now create our label with (LBL), then .

We return in "calculator mode" to print : , then

LRN Programming my TI

 14

On the printer, we obtain :

We can now re-test our program.

It is necessary to :

● enter a radius : for example

● launch the program :

and we get 157,0796327

If after the execution we press on to switch in programming

mode, we notice that the execution pointer is placed on the step

008.

We are going to add the second part allowing the calculation of

the area of the circle :

or : LBL B X2 X Π = R/S

then to go back to “calculator mode”.

LRN Programming my TI

 15

 for printing.

Now, a number n followed by display the circumference and

a number n followed by display the area of the circle.

We can now modify this program to enter the radius only once

and make our two calculations in continuation by typing :

radius

To do that, we have to store in memory the radius in the

procedure and recall the stored radius in the procedure .

LRN Programming my TI

 16

LRN Programming my TI

 17

Storage in memory

The TI contains several "areas" of storage to keep the used data.

These "areas" are called Registers.

The first register is the one which corresponds to the digital

display : it is the register “x”.

The second register is the register of test named “t”.

The command allows, as its name indicates it “x exchange t”,

to exchange the values of x and t.

Example :

1 2 3 456 puts the value 123 in t and 456 in x

 exchanges : 123 in x and 456 in t

Other registers are used for the storage, they are numbered from

00 to 99 1.

To manipulate these registers various instructions are usable :

 nn copies register x in register nn

 nn copies register nn in register x

 nn adds register x to register nn

 nn subtracts register x from register nn

 nn multiplies register nn by register x

 nn divides register nn by register x

 nn exchanges the register nn with register x

1 Differ according to the model of TI and the reserved options - See OP 16 / OP 17

LRN Programming my TI

 18

For our program “circle”, we are thus going to store the radius in

the register 01 to take it back later.

Behind we will insert .

During the input of the address of the register (01), the display

does not move forward for the next step.

Indeed, after , 2 characters are expected and take only a

single step of program.

Behind we insert .

We get :

000 76 LBL

001 11 A

002 42 STO

003 01 01

004 65 x

005 02 2

006 65 x

007 89 PI

008 95 =

009 91 R/S

010 76 LBL

011 12 B

012 43 RCL

013 01 01

014 33 X²

015 65 x

016 89 PI

017 95 =

018 91 R/S

To test, we need to input the radius, to press on to obtain

the circumference then press on to obtain the area.

LRN Programming my TI

 19

If, in “calculator mode” we press on , the radius is

displayed.

LRN Programming my TI

 20

Printing

We are going to use the printer to improve the presentation of

the results.

For the use of the printer, we have already seen LST ()

who allows to list a program.

We can also use :

 to print the contents of registers (INV LST)

 to print the register x (PRT)

 to move forward of one line (ADV)

Furthermore, some "special features" are usable thanks to the

instruction OP () :

• OP 01, OP 02, OP 03, OP 04 et OP 05 Allow to print an

alphanumeric text until 20 characters, a line of printer

making twenty characters of wide.

• OP 06 prints the register x followed by 5 alphanumeric

characters

• OP 07 prints a curve with the character "*"

• OP 08 prints the list of labels used by the program in

memory.

LRN Programming my TI

 21

The printing of an alphanumeric text is made on a line of 20

characters divided into 4 groups of 5 characters.

• OP 01 allocates values to the group 1 (outside left)

• OP 02 allocates values to the group 2 (inside left)

• OP 03 allocates values to the group 3 (inside right)

• OP 04 allocates values to the group 4 (outside right)

• OP 05 prints the alphanumeric line

• OP 00 erases the contents of the 4 groups (zero)

To allocate values to the groups, the TI uses a cross-reference

table of characters :

So, the character "A" is obtained with the code 13, the character

"=" with the code 64…

LRN Programming my TI

 22

Thus to print :

RAYON =

We have to write :

OP 00 erases groups
3 5 R (character #1)
1 3 A (character #2)
4 5 Y (character #3)
3 2 O (character #4)
3 1 N (character #5)
OP 01 allocates to group 1
0 0 space (character #6)
6 4 = (character #7)
0 0 space (character #8)
0 0 space (character #9)
0 0 space (character #10)
OP 02 allocates to group 2
OP 05 prints the line

We can also print a text of 5 characters, just behind the number

which is in the display (register x) using OP 04 (group 4) and OP

06.

To print :

12 cm²

We have to write :

OP 00

1 5

3 0

7 0

0 0

OP 04

1

2

OP 06

LRN Programming my TI

 23

Full Program

000 76 LBL	037 42 STO	074 00 00	111 00 00
001 11 A	038 03 03	075 69 OP	112 00 00
002 42 STO	039 71 SBR	076 02 02	113 00 00
003 01 01	040 30 TAN	077 69 OP	114 00 00
004 32 X/T	041 43 RCL	078 05 05	115 00 00
005 01 01	042 03 03	079 92 RTN	116 00 00
006 32 X/T	043 71 SBR	080 76 LBL	117 00 00
007 22 INV	044 28 LOG	081 38 SIN	118 69 OP
008 77 GE	045 71 SBR	082 69 OP	119 03 03
009 96 WRI	046 23 LNX	083 00 00	120 69 OP
010 71 SBR	047 25 CLR	084 03 03	121 05 05
011 23 LNX	048 91 R/S	085 03 03	122 92 RTN
012 71 SBR	049 76 LBL	086 01 01	123 76 LBL
013 39 COS	050 39 COS	087 07 07	124 30 TAN
014 43 RCL	051 69 OP	088 03 03	125 69 OP
015 01 01	052 00 00	089 05 05	126 00 00
016 71 SBR	053 03 03	090 02 02	127 03 03
017 28 LOG	054 05 05	091 04 04	128 06 06
018 65 *	055 01 01	092 03 03	129 04 04
019 02 02	056 03 03	093 00 00	130 01 01
020 65 *	057 04 04	094 69 OP	131 03 03
021 89 PI	058 05 05	095 01 01	132 05 05
022 95 =	059 03 03	096 01 01	133 02 02
023 42 STO	060 02 02	097 07 07	134 01 01
024 02 02	061 03 03	098 03 03	135 01 01
025 71 SBR	062 01 01	099 07 07	136 03 03
026 38 SIN	063 69 OP	100 03 03	137 69 OP
027 43 RCL	064 01 01	101 05 05	138 01 01
028 02 02	065 00 00	102 01 01	139 01 01
029 71 SBR	066 00 00	103 07 07	140 05 05
030 28 LOG	067 06 06	104 00 00	141 01 01
031 43 RCL	068 04 04	105 00 00	142 07 07
032 01 01	069 00 00	106 69 OP	143 00 00
033 33 X2	070 00 00	107 02 02	144 00 00
034 65 *	071 00 00	108 06 06	145 06 06
035 89 PI	072 00 00	109 04 04	146 04 04
036 95 =	073 00 00	110 00 00	147 00 00

LRN Programming my TI

 24

148 00 00	179 02 02	210 02 02	241 69 OP
149 69 OP	180 06 06	211 99 PRT	242 02 02
150 02 02	181 04 04	212 22 INV	243 00 00
151 69 OP	182 06 06	213 58 FIX	244 00 00
152 05 05	183 04 04	214 92 RTN	245 03 03
153 92 RTN	184 06 06	215 76 LBL	246 01 01
154 76 LBL	185 04 04	216 96 WRI	247 03 03
155 23 LNX	186 06 06	217 69 OP	248 02 02
156 06 06	187 04 04	218 00 00	249 03 03
157 04 04	188 06 06	219 00 00	250 00 00
158 06 06	189 04 04	220 00 00	251 01 01
159 04 04	190 69 OP	221 03 03	252 04 04
160 06 06	191 03 03	222 06 06	253 69 OP
161 04 04	192 06 06	223 01 01	254 03 03
162 06 06	193 04 04	224 03 03	255 03 03
163 04 04	194 06 06	225 02 02	256 05 05
164 06 06	195 04 04	226 04 04	257 01 01
165 04 04	196 06 06	227 03 03	258 07 07
166 69 OP	197 04 04	228 06 06	259 00 00
167 01 01	198 06 06	229 69 OP	260 00 00
168 06 06	199 04 04	230 01 01	261 07 07
169 04 04	200 06 06	231 02 02	262 03 03
170 06 06	201 04 04	232 04 04	263 00 00
171 04 04	202 69 OP	233 03 03	264 00 00
172 06 06	203 04 04	234 05 05	265 69 OP
173 04 04	204 69 OP	235 00 00	266 04 04
174 06 06	205 05 05	236 00 00	267 69 OP
175 04 04	206 92 RTN	237 04 04	268 05 05
176 06 06	207 76 LBL	238 01 01	269 25 CLR
177 04 04	208 28 LOG	239 03 03	270 35 1/X
178 69 OP	209 58 FIX	240 01 01	271 91 R/S

To use the program :

radius

The result is printed.

LRN Programming my TI

 25

Example :

Input :

Result :

In this program, we notice at first that instructions can be used

as labels :

LBL COS, LBL LNX, LBL WRI…

and that labels can be called by SBR () with return after the

call thanks to RTN (), SBR and RTN meaning

respectively SuBRoutine et ReTurN.

Other observation, we see that the printing of alphanumeric text

is expensive in number of program steps :

• “RAYON =” routine COS, step 49 to 79 = 31 steps

• “PERIMETRE =” routine SIN, step 80 to 122 = 43 steps

• “SURFACE =” routine TAN, step 123 to 153 = 31 steps

• “=======…” routine LNX, step 154 to 206 =53 steps

• ”SAISIR UN NOMBRE ! ” routine WRI 215 to 271 = 57 steps

Let be a total of 215 steps for a program of 271 steps !

LRN Programming my TI

 26

The program contains a test of value allowing to go towards a

treatment of error (LBL WRI) if the value of the entered radius is

lower than 1.

| 004 32 X/T |
| 005 01 01 |
| 006 32 X/T |
| 007 22 INV |
| 008 77 GE |
| 009 96 WRI |

that could have been write :

| 004 32 X/T |
| 005 00 00 |
| 006 77 GE |
| 007 96 WRI |
| 008 32 X/T |

GE and INV GE allow a conditional jump according to a

comparison between registers x and t, GE meaning Greater or

Equal.

The solution 1 (6 steps) puts the radius in t by exchange of x and

t, puts the value “1” in x, re-exchanges x and t to have “1” in t

and the radius in x then tests if x is strictly lower (INV GE) than

t :

“Is the radius strictly lower than 1 ?”

LRN Programming my TI

 27

The solution 2 (5 steps) puts the radius in t by exchange of x and

t, puts the value “0” in x then tests if x is greater or equal to t :

“Is zero greater or equal to the radius ?”

(exchange x with t, after the test, put again the radius in x for

the continuation of the calculations, RCL 01 being more

expensive than one step)

Two other characteristics are to be explained :

1. The routine LOG allows the printing of the contents of the

register x by formatting it with two decimals.

| 207 76 LBL |
| 208 28 LOG |
| 209 58 FIX |
| 210 02 02 |
| 211 99 PRT |
| 212 22 INV |
| 213 58 FIX |
| 214 92 RTN |

FIX 2 fixes the display to two decimals, PRT prints the

register x and INV FIX cancels the formatting.

2. The routine WRI, for printing the error message, ends

by :

| 269 25 CLR |
| 270 35 1/X |
| 271 91 R/S |

LRN Programming my TI

 28

CLR 1/X puts the register x to zero and divide 1 by x what

provokes an error (division by zero !) and activates the blinking

of the display to indicate the error, R/S stopping the program.

(This "trick" is often used to alert the user of a typing error.)

Further to the previous remarks, we can modify this program to

improve it, indeed the concerned calculators (TI58, TI58C and

TI59) having a memory for program limited in number of steps,

one of the main concerns of programming is the economy of step,

an approach of excessive economy being able to damage the

legibility, thus the maintainability, of a program …

LRN Programming my TI

 29

Here is thus a version "optimized" for this program :

000 69 OP	037 07 07	074 01 01	111 00 00
001 00 00	038 00 00	075 69 OP	112 69 OP
002 03 03	039 00 00	076 01 01	113 01 01
003 06 06	040 07 07	077 06 06	114 01 01
004 01 01	041 03 03	078 04 04	115 07 07
005 03 03	042 00 00	079 00 00	116 03 03
006 02 02	043 00 00	080 00 00	117 07 07
007 04 04	044 69 OP	081 00 00	118 03 03
008 03 03	045 04 04	082 00 00	119 05 05
009 06 06	046 69 OP	083 00 00	120 01 01
010 69 OP	047 05 05	084 00 00	121 07 07
011 01 01	048 25 CLR	085 69 OP	122 00 00
012 02 02	049 35 1/X	086 02 02	123 00 00
013 04 04	050 91 R/S	087 69 OP	124 69 OP
014 03 03	051 76 LBL	088 05 05	125 02 02
015 05 05	052 11 A	089 43 RCL	126 06 06
016 00 00	053 42 STO	090 01 01	127 04 04
017 00 00	054 01 01	091 71 SBR	128 65 *
018 04 04	055 32 X/T	092 28 LOG	129 06 06
019 01 01	056 00 00	093 65 *	130 22 INV
020 03 03	057 77 GE	094 02 02	131 28 LOG
021 01 01	058 00 00	095 65 *	132 95 =
022 69 OP	059 00 00	096 89 PI	133 69 OP
023 02 02	060 32 X/T	097 95 =	134 03 03
024 03 03	061 71 SBR	098 42 STO	135 69 OP
025 01 01	062 23 LNX	099 02 02	136 05 05
026 03 03	063 69 OP	100 69 OP	137 43 RCL
027 02 02	064 00 00	101 00 00	138 02 02
028 03 03	065 03 03	102 03 03	139 71 SBR
029 00 00	066 05 05	103 03 03	140 28 LOG
030 01 01	067 01 01	104 01 01	141 43 RCL
031 04 04	068 03 03	105 07 07	142 01 01
032 69 OP	069 04 04	106 03 03	143 33 X2
033 03 03	070 05 05	107 05 05	144 65 *
034 03 03	071 03 03	108 02 02	145 89 PI
035 05 05	072 02 02	109 04 04	146 95 =
036 01 01	073 03 03	110 03 03	147 42 STO

LRN Programming my TI

 30

148 03 03	165 01 01	182 23 LNX	199 69 OP
149 69 OP	166 07 07	183 25 CLR	200 02 02
150 00 00	167 00 00	184 91 R/S	201 69 OP
151 03 03	168 00 00	185 76 LBL	202 03 03
152 06 06	169 06 06	186 23 LNX	203 69 OP
153 04 04	170 04 04	187 06 06	204 04 04
154 01 01	171 00 00	188 04 04	205 69 OP
155 03 03	172 00 00	189 06 06	206 05 05
156 05 05	173 69 OP	190 04 04	207 92 RTN
157 02 02	174 02 02	191 06 06	208 76 LBL
158 01 01	175 69 OP	192 04 04	209 28 LOG
159 01 01	176 05 05	193 06 06	210 58 FIX
160 03 03	177 43 RCL	194 04 04	211 02 02
161 69 OP	178 03 03	195 06 06	212 99 PRT
162 01 01	179 71 SBR	196 04 04	213 22 INV
163 01 01	180 28 LOG	197 69 OP	214 58 FIX
164 05 05	181 71 SBR	198 01 01	215 92 RTN

216 steps program instead of 272, is an economy of 56 steps!

LRN Programming my TI

 31

The language

LRN Programming my TI

 32

LRN Programming my TI

 33

We can now approach the "verbs" by themes to make the most

exhaustive possible presentation :

● Programming

● Additional keys

● Data entry

● The arithmetic operations

● Erasing

● Roots and powers

● Mathematical functions

● Trigonometry

● Printing

● Options of display

● Data management

● Jump statements

● Statistics

● Function keys

● Read / Write

● Library modules

● Special operations

● Other functions

● Hidden verb

LRN Programming my TI

 34

Programming

● CP () In "calculator mode", erase all the program

memory (putting in zero of all the steps), puts back to zero all

addresses of return of the subroutines, returns the pointer of step

to the step 000 and erases the register t.

● LRN () allows to enter in "programming mode" or to go out

of it (return in the "calculator mode").

● SST () in "programming mode", goes forward of one step.

● BST () in "programming mode", goes backward of one step.

● INS () in ‘programming mode’, insert one step before

current step.

● DEL () in “programming mode”, delete the current

step.

In “programming mode”, press on a key replaces the instruction

of the current step.

LRN Programming my TI

 35

Additional keys

● 2nd () allows to use the second function of a key

corresponding to the statement written above the key.

Example : gives LBL

● INV () for some functions (EE, ENG, FIX, LOG, LNX, Yx,

INT, SIN, COS, TAN, PRD, SUM, DMS, P/R, STA, AVR, LST,

SBR, EQ, GE, IFF, STF, DSZ, WRI), activate the inverse

function.

In some cases, both touches and can be used.

Example : the decimal logarithm is obtained by and the

antilog of the decimal logarithm is obtained by , that

we shall write respectively LOG et INV LOG.

The “calculator mode” allows to type as well as

 , the programming mode admitting only this last notation

(before) we disadvise to get used to the inverse entry

(before).

● IND () allows the indirect addressing of the registers

management instructions, jump statements and some others

specific instructions.

LRN Programming my TI

 36

Are concerned by this use :

● registers management instructions STO, RCL, EXC, SUM,

INV SUM, PRD, INV PRD,

● jump statements GTO, SBR, EQ, INV EQ, GE, INV GE,

DSZ, INV DSZ, IFF, INV IFF

● other specific instructions PGM, OP, FIX, STF.

The indirect addressing allows to use a register like a container of

the address to be used.

Example :

 puts the value 5 in the register 01,

 puts the value 5 in the register the

address of which is in the register 01. (If the register 01 contains

4, the value 5 will be stored in the register 04)

The instructions DSZ and IFF can use a double indirect

addressing because they manipulate at the same time a register

number and an jump address.

INV IFF IND 01 IND 02 means that if the flag, the number of

which is contained in the register 01, is lowered (flag=0) the

program will go to the address which is specified in the register

02.

LRN Programming my TI

 37

The writing of the instructions with indirect addressing can be

different from "instruction name" follow by IND according to this

board :

Sequence of keys Instructions Codes

 ST* 72

 RC* 73

 EX* 63

 SM* 74

 INV SM* 22 74

 PR* 64

 INV PR* 22 64

 GT* 83

 SBR IND 71 40

 EQ 67 40

 INV EQ 22 67 40

 GE 77 40

 INV GE 22 70 40

 DSZ 97 40

 INV DSZ 22 97 40

 IFF 87 40

 INV IFF 22 87 40

 PG* 62

 OP* 84

 FIX 58 40

 STF 86 40

 INV STF 22 86 40

LRN Programming my TI

 38

Data entry

● Numbers (…) introduction of numbers in

the display register x.

● Decimal point () introduces decimal point.

● Sign () changes the sign of the display register x.

● PI () introduces the value 3.14159265359 in the

display register x.

● |X| () returns the absolute value of the display

register x.

● OP 10 () indicates if the value of the display

register x is positive or negative.

Return 1 if x > 0, 0 if x = 0, -1 if x < 0

● INT () returns the integer part of the register x.

● INV INT () returns the decimal part of the

register x.

LRN Programming my TI

 39

 The arithmetic operations

● / () division.

● * () multiplication.

● - () subtraction.

● + () addition.

● = () displays and "freezes" the result.

● (() opening parenthesis.

●) () closing parenthesis.

The calculators TI58/TI58C/TI59 use the direct algebraic

notation (AOS system).

The operations thus follow the rule of priority of the operators.

2 + 3 * 4 = will give 14 like 2 + (3 * 4) =, the parenthesis

being useless, in that case.

On the other hand, (2 + 3) * 4 = will give as result 20.

Several levels of parenthesis can be used :

2 + 3 * 4 / 5 = will give 2.8

((2 + 3) * 4) / 5 = will give 4

LRN Programming my TI

 40

Erasing

● CE () erases the current introduction without interfering on

the waiting operations and stops the blinking of the display.

● CLR () erases the register x and the current calculations.

Also stops the blinking of the display.

● CMS () erases all the data registers according to the

defined partition (See OP 16 et OP 17)

● CP () in programming mode, erases only the register

t.

LRN Programming my TI

 41

Roots et powers

● X2 () raises to the square the value of the display register

x.

● SQR () return the square root of the display register x.

(if the register x contains a negative value activates the

blinking of the display)

● Yx () raises the number contained in the display register to

the entered power : will give 1953125

● INV Yx () calculates the xth root of the number

contained in the display register :

 will give 5

LRN Programming my TI

 42

Mathematical functions

● 1/X () calculates the reciprocal of the content of the display

register x.

● LNX () calculates the natural logarithm (base e) of the

display register x. (if x<0 activates the blinking of the display)

● INV LNX () calculates the exponent (ex) from the

display register x.

● LOG () calculates the decimal logarithm (base 10) of

the display register x. (if x<0 activates the blinking of the

display)

● INV LOG () calculates the antilog of the display

register x. (10 raised to the power of x)

Often used in the programs to multiply by a multiple of 10 bigger

than 100 :

RCL 01 * 1 0 0 0 0 0 = costs 10 steps

RCL 01 * 5 INV LOG = costs 7 steps !

● P/R () converts the polar coordinates in Cartesian

coordinates from registers x (angle) et t (radius) and returns the

ordinate (y) in the register x and the abscissa (x) in the register

t.

LRN Programming my TI

 43

Example :

10 x/t puts the radius in register t

35 P/R puts the angle in the register x

and returns the ordinate 5.73576436351

x/t returns the abscissa 8.19152044289

● INV P/R () converts the Cartesian coordinates in

polar coordinates from the ordinate (y) in the register x and the

abscissa (x) in the register t, returns the angle in the register x

and the radius in the register t.

It will be necessary to watch the choice of the angular mode

(DEG, RAD or GRD) before proceeding to the calculation.

The angular mode defines the limits of the angle :

LRN Programming my TI

 44

Trigonometry

● DEG () selects the angular mode “degrees”.

● RAD () selects the angular mode “radians”.

● GRD () selects the angular mode “grads”.

● SIN () sine of the content of the display register x.

● INV SIN () arcsine of the content of the display

register x.

● COS () cosine of the content of the display register x.

● INV COS () arccosine of the content of the

display register x.

● TAN () tangent of the content of the display register x.

● INV TAN () arctangent of the content of the

display register x.

arccosecant = 1/X INV SIN

arcsecant = 1/X INV COS

arccotangent = 1/X INV TAN

LRN Programming my TI

 45

● DMS () converts an angle measured in degrees,

minutes, seconds in decimal degrees.

The input format is DD.MMSSsss, the decimal point has to

separate the degrees of minutes.

● INV DMS () converts an angle measured in

decimal degrees in degrees, minutes, seconds.

LRN Programming my TI

 46

Printing

● ADV () advances the paper of one line.

● PRT () prints the register x.

● LST () lists the program

● INV LST () prints the contents of registers since

the register nn up to the last one, nn being the value in the

register x.

● OP 00 () erases the alphanumeric printing

buffer.

● OP 01 () allocates values to the group 1

(outside left) in the alphanumeric printing buffer.

● OP 02 () allocates values to the group 2

(inside left) in the alphanumeric printing buffer.

● OP 03 () allocates values to the group 3

(inside right) in the alphanumeric printing buffer.

LRN Programming my TI

 47

● OP 04 () allocates values to the group 4

(outside right) in the alphanumeric printing buffer.

● OP 05 () prints the alphanumeric buffer.

● OP 06 () prints, on the same line, the

content of the display register x and the last 4 characters of the

group 4 (outside right) of the alphanumeric buffer.

The coding of the alphanumeric printing buffer is made according

the following table :

● OP 07 () allows to draw a curve by printing

one asterisks in a column 0 to 19.

Single one asterisk is printed on every line in the column

corresponding to the integer part of the display register x in the

range of value -1 < x < 20.

LRN Programming my TI

 48

Example :

Sinusoid 18 degrees by 18 degrees.

+1 = * 9.9 = allows to “calibrate” the value in an interval from 0

to 19.8 to determine the column of the asterisk.

LRN Programming my TI

 49

● OP 08 () lists the labels of the program.

LRN Programming my TI

 50

Options of display

The standard display of the TI is made on 10 digits, while the

internal management is on 13 digits for more precision in the

calculations.

The display is thus limited to the numbers included between

.0000000001 et 9999999999 (In absolute value, the sign not

taking a place on the ten characters).

The numbers exceeding these limits must be keyed in scientific

notation.

So the number

-0.0000000000000000000000000000001234567

could be written

-1.234567 * 10-31

and will be introduced in the following way

1.234567 31

and will be displayed

-1.234567 being the mantissa and -31 being the exponent

The mantissa is thus limited to 7 characters and the exponent to

2.

LRN Programming my TI

 51

● EE () allows to pass in scientific notation

● INV EE () allows to cancel the scientific notation.

● ENG () allows to pass in engineering notation.

Variant of the scientific notation, the engineering notation is

characterized by an adjustment of the mantissa and the exponent

to have an exponent multiple of three.

So -1.234567-31 will give -123.4567-33 in engineering notation.

● INV ENG () allows to cancel the engineering

notation.

LRN Programming my TI

 52

The engineering notation allows to represent the numbers in

usual units of measure :

10n Prefix Decimal number

1024 Yotta 1 000 000 000 000 000 000 000 000

1021 Zetta 1 000 000 000 000 000 000 000

1018 Exa 1 000 000 000 000 000 000

1015 Peta 1 000 000 000 000 000

1012 Tera 1 000 000 000 000

109 Giga 1 000 000 000

106 Mega 1 000 000

103 Kilo 1 000

102 Hecto 100

101 Deca 10

100 Unit 1

10−1 Deci 0,1

10−2 Centi 0,01

10−3 Milli 0,001

10−6 Micro 0,000 001

10−9 Nano 0,000 000 001

10−12 pico 0,000 000 000 001

10−15 femto 0,000 000 000 000 001

10−18 atto 0,000 000 000 000 000 001

10−21 zepto 0,000 000 000 000 000 000 001

10−24 yocto 0,000 000 000 000 000 000 000 001

LRN Programming my TI

 53

● FIX () allows to choose the decimalization.

The digit following the key FIX indicates the number of fixed

decimals (0 à 8).

● FIX IND () allows to choose, or cancel, the

decimalization in an indirect way.

The number following the key FIX indicates the register number

which contains the number of fixed decimals (0 to 8), or the

value 9 to go back in floating decimal point.

● INV FIX () cancels the decimalization and goes

back in floating decimal point. (FIX 9 has the same effect)

LRN Programming my TI

 54

Data management

● X/T () exchanges the contents of the registers x et t.

● STO () stores the content of the register x in the register

nn.

● ST* () stores the content of the register x in a

register the address of which is contained in the register nn.

1 5 ST* 01 puts the value 15 in the register the address of which

is stored in the register 01.

If the register 01 contains 20, puts 15 in the register 20,

If the register 01 contains 7, puts 15 in the register 7…

● RCL () puts the content of the register nn in the register x.

● RC*() puts the content of the register the address

of which is contained in the register nn in the register x.

● SUM () adds the content of the register x to the content of

the register nn.

● SM* () adds the content of the register x to the

content of the register the address of which is contained in the

register nn.

LRN Programming my TI

 55

● INV SUM () subtracts the content of the register x

from the content of the register nn.

● INV SM* () subtracts the content of the

register x from the content of the register the address of which is

contained in the register nn.

● PRD () multiplies the content of the register nn by the

content of the register x.

● PD* () multiplies the content of the register

the address of which is contained in the register nn by the

content of the register x.

● INV PRD () divides the content of the register nn

by the content of the register x.

● INV PD* () divides the content of the

register the address of which is contained in the register nn by

the content of the register x.

● EXC () exchanges the content of the register nn with

the content of the register x.

LRN Programming my TI

 56

● EX* () exchanges the content of the register

the address of which is contained in the register nn with the

content of the register x.

● OP 2n (n) increments the value of the register n

of 1. Applies to registers 0 to 9.

OP 21 is same as 1 SUM 01

● OP 3n (n) decrements the value of the register

n of 1. Applies to registers 0 to 9.

OP 31 is same as 1 INV SUM 01

LRN Programming my TI

 57

Jump statements

● LBL () allows to define program labels.

2 kinds of labels are usable :

• “user” labels (or function keys) : , , …

• ordinary labels : all keys can be then used as labels with the

exception of the digital touches (, , …) and keys

, , , , , , et the

specific key (authorized but strongly disadvised).

Naturally, in the case of use of a key as label, this last one will

not be treated as instruction in the program execution but

only as label.

● GTO () allows to jump to a precise address. moves the

pointer of step at the indicated address and, in programming

mode, continues the execution of the program from this address.

Two addressing are possible

• Logical addressing : GTO is then followed by a name defined

besides as label.

Example :

 … and somewhere else in the program …

• Absolute addressing : GTO is then followed by an address of

step.

Example :

 which sends to the step 123

LRN Programming my TI

 58

The advantage of the logical addressing is in the clarity and the

legibility of the program, and in case of addition or deletion of a

the step in the program, nothing changes the logical link. (This

method costs at least 4 steps.)

The absolute addressing allows an economy of step (3 steps) but

imposes a vigilance for the maintenance because adding or

deleting a step in program moves the address of the step aimed

by the GTO if these updates are made before the address of

origin.

● GO* () allows the relative addressing in a

program by using a data register which contains the address of

the step aimed by the jump.

Example :

 means that the address of jump is

contained in the register 01.

● SBR () allows the jump to the address specified, like for

GTO, but the first return statement RTN () will send back

the pointer behind the calling SBR.

SBR uses, like GTO, either the logical addressing, or the absolute

addressing.

LRN Programming my TI

 59

Example :

 call of the procedure beginning at the label LOG,

 return behind the call.

● SBR IND () allows the relative addressing in a

program by using a data register which contains the address of

the step aimed by the procedure call.

The first return statement RTN () will send back the

pointer behind the calling SBR.

● RTN () return from procedure called by SBR (Return).

In the case or the execution meets an instruction RTN while no

SBR statement is in expectation of a return, then RTN behaves

as R/S and stops the program.

LRN Programming my TI

 60

In the case of imbricated calls, the return is made behind the last

call made and so on until the exhaustion of the pile containing the

return addresses.

● RST () returns the steps pointer to the step 000, puts back

to zero the return addresses of subroutines and puts back flags to

zero (“low position”).

● R/S () in "calculator mode" launches the program from the

current pointer or stops the running program, as verb in a

program stops the program.

● EQ () conditional test, goes to the specified address if

the register x is equal to the register t, else the program

continues in sequence.

EQ uses, like GTO, either the logical addressing, or the absolute

addressing.

Example :

 goes to label LNX if x = t

 goes to address 123 if x = t

LRN Programming my TI

 61

● EQ IND () conditional test, using a data

register which contains the address of the step aimed if the

register x is equal to the register t, else the program continues in

sequence.

● INV EQ () conditional test, goes to the specified

address if the register x is different from the register t, else the

program continues in sequence.

● INV EQ IND () conditional test, using a

data register which contains the address of the step aimed if the

register x is different from the register t, else the program

continues in sequence.

● GE () conditional test, goes to the specified address if

the register x is greater than or equal to the register t, else the

program continues in sequence.

GE uses, like GTO, either the logical addressing, or the absolute

addressing.

● GE IND () conditional test, using a data

register which contains the address of the step aimed if the

register x is greater than or equal to the register t, else the

program continues in sequence.

LRN Programming my TI

 62

● INV GE () conditional test, goes to the specified

address if the register x is less than the register t, else the

program continues in sequence.

● INV GE IND () conditional test, using a

data register which contains the address of the step aimed if the

register x is less than the register t, else the program continues

in sequence.

Conditional jumps

Equal EQ
Different INV EQ
Greater or equal GE
Less INV GE

LRN Programming my TI

 63

Except the conditional tests by comparison of registers x and t,

the TI allows to manage up to 10 flags, the state of which (raised

or lowered) can be tested for jumping.

Flags are numbered from 0 to 9.

● STF () raises specified flag (Set Flag).

Example :

 raises flag 1

● INV STF () lowers specified flag.

Example :

 lowers flag 1

● IFF () conditional test, goes to the specified address

if the flag is raised, else the program continues in sequence.

IFF uses, like GTO, either the logical addressing, or the absolute

addressing.

● IFF IND () conditional test, using a data

register which contains the address of the step aimed if the

specified flag is raised, else the program continues in sequence.

● INV IFF () conditional test, goes to the specified

address if the flag is lowered, else the program continues in

sequence.

LRN Programming my TI

 64

● INV IFF IND () conditional test, using

a data register which contains the address of the step aimed if

the specified flag is lowered, else the program continues in

sequence.

● DSZ () conditional test allowing to manage iterative

sequences. manipulates a data register (0 to 9 only) and uses,

like GTO, either the logical addressing, or the absolute

addressing.

DSZ proceeds in two stages :

• Decrements the tested register if the value is positive (or

increments it, if the value is negative)

• Tests if the register contains zero : if NO goes to the

specified address, if YES continues in sequence.

● DSZ IND () conditional test allowing to

manage iterative sequences. manipulates a data register (0 to 9

only) and uses a data register which contains the address of the

aimed step if the test is satisfied.

● INV DSZ () conditional test allowing to manage

iterative sequences. manipulates a data register (0 to 9 only) and

uses, like GTO, either the logical addressing, or the absolute

addressing.

LRN Programming my TI

 65

INV DSZ proceeds in two stages :

• Decrements the tested register if the value is positive (or

increments it, if the value is negative)

• Tests if the register contains zero : if YES goes to the

specified address, if NO continues in sequence.

● INV DSZ IND () conditional test

allowing to manage iterative sequences. manipulates a data

register (0 to 9 only) and uses a data register which contains the

address of the aimed step if the test is satisfied.

LRN Programming my TI

 66

Statistics

The TI manages the statistics for a sample on two values

representing a point on a plan of axes x and y.

On the population of points, we can determine the average, the

variance, the standard deviation …

● Initialization of the statistical data : The statistics use 6 data

registers, and the register t, which must be put back to zero

before any new input.

Register 01 02 03 04 05 06

Content ∑y ∑y² N ∑x ∑x² ∑xy

This initialization can be made :

• Or manually : what erases all the registers,

• Or manually :

 ,

• Or by using the initialization routine of the module 01 of the

basic library (ML-01) :

LRN Programming my TI

 67

● STA () data input.

• or x y for entering x and y

• or y for entering y alone

the rank i is displayed for each couple (xi, yi) entered.

● INV STA () cancelling data.

• or x y for cancelling x and y

• or y for cancelling y alone

● AVR () calculates and displays the average of the

various values of y (displays the average of the various

values of x).

● INV AVR () calculates and displays the standard

deviation of the various values of y (displays the standard

deviation of the various values of x).

● OP 11 () calculates and displays the

variance of the various values of y (displays the variance of

the various values of x).

LRN Programming my TI

 68

● OP 12 () Linear regression – calculates

and displays the y-intercept (intersection point of the graph of

function with the Y axis for x = 0) and displays the slope.

● OP 13 () Linear regression – calculates

and displays the correlation coefficient.

● OP 14 () Linear regression – calculates

and displays the value of y for an entered value of x.

● OP 15 () Linear regression - calculates

and displays the value of x for an entered value of y.

LRN Programming my TI

 69

Function keys

The function keys (or user keys) are among 10. They are usable

in the programs as label and can be called by the jump

statements (GTO, GE, EQ…).

The use of one key alone is equivalent to SBR. (Example :

 =)

In “calculator mode”, they allow to launch the program from a

precise point.

● A ()

● B ()

● C ()

● D ()

● E ()

● A’ ()

● B’ ()

● C’ ()

● D’ ()

● E’ ()

LRN Programming my TI

 70

Read / Write

The instructions of reading / writing are usable only on TI59

because she is the only one to be endowed with a magnetic cards

reader.

The TI59 possesses up to 120 storage memories distributed

between 4 groups.

A magnetic card for TI59 contains 2 tracks which can record,

each, one group.

Two cards are thus necessary to record all the memory of a TI59.

● WRI () writing on the magnetic card (must be

preceded by the number of the group to be recorded 1, 2, 3 or 4)

LRN Programming my TI

 71

● INV WRI () reading of the magnetic card (if

preceded by the number of the group, with negative sign -n,

forces the reading in the group n)

LRN Programming my TI

 72

Library modules

With the calculator, a pluggable

module is always supplied.

Named "Master Library", it contains

twenty five utility programs.

It can be replaced by other one of

the modules marketed by Texas

Instruments.

LRN Programming my TI

 73

● PGM () allows to activate, or to deactivate, a program

of the library module.

• nn activates the program nn,

• deactivates the current program.

 allows to display the number

of the plugged module and prints its name if the printer is

connected.

Example :

The program 24 of the “Master Library” converts from/to decimal

length units (cm, m, km) from/to British length units (inch, foot,

yard, miles)

So to know how much 1 yard makes of meters it is necessary to

introduce the sequence :

● OP 09 () loads the activated program in the

program memory of the TI. (Erases the program in memory to

replace it!)

LRN Programming my TI

 74

Special operations

● OP 01 to OP 08 see Printing

● OP 09 see Library modules

● OP 10 see Data entry

● OP 11 to OP 15 see Statistics

● OP 16 () displays the memory partition :

distribution between the program steps and the data registers.

● OP 17 () positions the memory partition :

distribution between the program steps and the data registers, by

group of 10 registers.

Example :

On TI58, will give 239.29 that means

240 steps (from 000 to 239) and 30 registers (from 00 to 29)

LRN Programming my TI

 75

● OP 18 () raises the flag 7, if no error of

execution is encountered.

● OP 19 () raises the flag 7, if an error of

execution is encountered.

● OP 40 () on TI58C only, raises the flag 7 if

the printer is connected.

● OP IND () uses the content of a register nn

to determine which OPeration is applicable.

Example :

 uses the content of the register 01.

• If the register 01 contains 16, displays the partition

(idem OP 16),

• If the register 01 contains 0, erases the alphanumeric

printing buffer (idem OP 00).

LRN Programming my TI

 76

Other functions

● PAU () allows to preserve half a second the display of

the register x during the execution of the program. Several

pauses can follow one another for prolonging the display.

● NOP () no operation. Instruction without any effect on

the execution. Serves to insert a step so as anticipate a space

between two sequences of program or to replace an instruction

without provoking a gap in the numbering of steps, instead of

making DEL .

LRN Programming my TI

 77

Hidden verb

● HIR (no key) The TI59/58/58C hides 8 internal registers used

by the system for its own functions.

The system based on the direct algebraic notation manages an

AOS pile in these registers to put in on hold the numbers in the

calculations to several operators to respect the priority of these

operators.

Then complex functions (STA, AVR, P/R, DMS) store

intermediate results in these registers as well as the statistical

functions (OP 11, OP 12, OP 13, OP 14, OP 15) and the

alphanumeric printing functions (OP 00, OP 01, OP 02, OP 03,

OP 04).

A particular instruction exists to manipulate these registers.

Officially, this instruction does not exist :

• not a word in the TI documentations,

• not a key to input it into a program.

And nevertheless …

It is so necessary to use trickery to introduce this instruction with

manipulations which are more similar to the juggling than to the

programming.

Thus, we will create a small program…

First, we choose the ‘programming mode” ()after having

erased the contents of the memory program ().

LRN Programming my TI

 78

then we enter the following instructions :

that gives, printed with :

We can now modify our program by deleting the step 004 then

the step 002 :

• , then for going to step 004

• for deleting the step 004

• for going to step 002

• for deleting the step 002.

We get :

LRN Programming my TI

 79

We can see that the code 82 was translated into HIR by the

printer.

Here is thus our hidden instruction which appears.

In "calculator mode", let us enter the small following calculation :

which gives us 19 because the multiplication is priority on the

addition.

Now we will execute our small program by keying on the

function keys.

The number 7 appears to the display.

It is the first number of our calculation which was put on hold

(stored in the AOS pile) so that the multiplication can be made

first.

HIR 12 would give 3 in the display(posting), showing us that the

second number of our operation was also stored in the AOS pile.

• HIR 0n (0 ≤ n ≤ 8) stores the content of the register x in the

internal register n. (≈ STO)

• HIR 1n (0 ≤ n ≤ 8) recalls the content of the internal register n

in the register x. (≈ RCL)

• HIR 3n (0 ≤ n ≤ 8) adds the content of the register x to the

internal register n. (≈ SUM)

LRN Programming my TI

 80

• HIR 4n (0 ≤ n ≤ 8) multiplies the content of the internal

register n by the register x. (≈ PRD)

• HIR 5n (0 ≤ n ≤ 8) subtracts the content of the register x of

the internal register n. (≈ INV SUM)

• HIR 6n (0 ≤ n ≤ 8) divides the content of the internal register

n by the register x. (≈ INV PRD)

LRN Programming my TI

 81

Summary table of the instructions

Code Instr. Keys Code Instr. Keys

00 0 31 LRN
01 1 32 X/T
02 2 33 X2
03 3 34 SQR
04 4 35 1/X
05 5 36 PGM
06 6 37 P/R
07 7 38 SIN
08 8 39 COS
09 9 40 IND
10 E' 41 SST
11 A 42 STO
12 B 43 RCL
13 C 44 SUM
14 D 45 YX
15 E 46 INS
16 A' 47 CMS
17 B' 48 EXC
18 C' 49 PRD
19 D' 50 IXI
20 CLR 51 BST
21 2nd 52 EE
22 INV 53 (
23 LNX 54)
24 CE 55 /
25 56 DEL
26 57 ENG
27 58 FIX
28 LOG 59 INT
29 CP 60 DEG
30 TAN 61 GTO

LRN Programming my TI

 82

Code Instr. Keys Code Instr. Keys

62 PG*

81 RST

63 EX*

82 HIR

64 PR*

83 GO*

65 *

84 OP*

66 PAU 85 +

67 EQ 86 STF
68 NOP 87 IFF
69 OP 88 DMS
70 RAD 89 PI
71 SBR 90 LST
72 ST* 91 R/S

73 RC* 92 RTN

74 SM* 93 .

75 - 94 +/-

76 LBL 95 =

77 GE 96 WRI
78 STA 97 DSZ
79 AVR 98 ADV
80 GRD 99 PRT

LRN Programming my TI

 83

Comparative tests

LRN Programming my TI

 84

LRN Programming my TI

 85

For a same feature, several solutions of programming can appear.

The cost, in number of steps, or the execution duration can

influence our programming choice according to the studied case.

Sometimes, the economy of steps can be crucial, the memory

being relatively limited.

Occasionally the speed of execution will be privileged as criterion

of optimization.

Fortunately, considering the nature of the programs developed for

this kind of machine, these concerns will be often superfluous.

Nevertheless, study the various hypotheses, for resolution of

programs cases, can be useful to understand the mechanisms of

the language.

LRN Programming my TI

 86

Reset the registers

A great classic of programming with this kind of machine is to

reset only some registers.

Indeed, to reset all the registers, all at the same time, we have

the instruction who answers everything the possible

criteria : quickness and only 1 program step.

But to put back to zero a set of registers we shall have three

choices of programming :

• Programming by decrement,

• Manipulation of partitions,

• Use of the libraries programs.

The 3 approached methods are on the basis of a reset of registers

00 to 09 and of registers 00 to 29.

1st method : Programming by decrement

nn = register max (9 or 29)

xxx = jump address

LRN Programming my TI

 87

2nd method : Manipulation of partitions

n = number of the memory group

 (1 for 00 to 09, 3 for 00 to 29 [*])

m = return to initial partition

(5 for example for 159-39 [*])

[*]
 concern the TI58 and TI58C

3rd method : Use of the libraries programs

nn = register max (9 or 29)

Uses Master Library ML-01

or

nn = register max (9 or 29)

Uses Maths Utilities MU-10

LRN Programming my TI

 88

Of course, these three methods do not give the same result in

term of number of steps and in execution duration :

 1st method 2nd method 3rd method

memories steps time steps time steps time

00 to 09 10 3,5 s 7 0,4 s 6 2,4 s

00 to 29 11 10,5 s 7 0,4 s 7 7 s

The 1st method which appears the most sensible in term of

programming is nevertheless the most expensive in term of steps

as well as in term of time. This method remains nevertheless the

most used.

The 2nd method is the winner in duration of execution but does

not offer compatibility between the TI58/58C and the TI59

because the definitions of memory groups are not the same (See

OP 17).

The 3rd method, not often used, is a good compromise and would

deserve more attention.

LRN Programming my TI

 89

Repetitive sequence

In a program, the presence of sequences of similar instructions in

several places of the code is rather frequent.

The question which arises then is to know if it is sensible, or not,

to convert, this repetitive sequence, in a procedure with a call,

every time that it seems necessary.

Although some methods laud an excessive modularity, the

purpose is not to systematize this approach but rather to consider

when it can be beneficial.

The following examples are based on the principle of three

instructions repeated to three different places in the same

program. ()

Solution 1 :

 Writing of the instruction sequence as often as necessary.

 3 sequences

 3 instructions

 �

 9 steps

nbr steps = nbr sequences * nbr instructions

LRN Programming my TI

 90

Solution 2 :

Calling a procedure by relative addressing (label).

 3 calls

 3 instructions

 �

 12 steps

nbr steps = (nbr calls * 2) + (nbr instructions + 3)

The following summary table allows us to determine from how

much of instructions and from how many calls, we can get a

substantial economy of steps.

 Calls 1 2 3 4 5 6 7 8

 Solution 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 6 2 8 3 10 4 12 5 14 6 16 7 18 8 20

2 2 7 4 9 6 11 8 13 10 15 12 17 14 19 16 21

3 3 8 6 10 9 12 12 14 15 16 18 18 21 20 24 22

4 4 9 8 11 12 13 16 15 20 17 24 19 28 21 32 23

5 5 10 10 12 15 14 20 16 25 18 30 20 35 22 40 24

6 6 11 12 13 18 15 24 17 30 19 36 21 42 23 48 25

7 7 12 14 14 21 16 28 18 35 20 42 22 49 24 56 26

8 8 13 16 15 24 17 32 19 40 21 48 23 56 25 64 27

9 9 14 18 16 27 18 36 20 45 22 54 24 63 26 72 28

I
n

s
tr

u
c
ti

o
n

s

10 10 15 20 17 30 19 40 21 50 23 60 25 70 27 80 29

LRN Programming my TI

 91

We would also have been able to study a third solution …

Solution 3 :

Calling a procedure by absolute addressing (address)

 3 calls

 3 instructions

 �

 13 steps

nbr steps = (nbr calls * 3) + (nbr instructions + 1)

LRN Programming my TI

 92

Loop test

 is the command which returns the execution pointer to the

beginning of the program memory.

In fact, 3 possibilities allow to return to the beginning of the

partition :

• , Of course, but this instruction also puts back flags to

zero as well as the return addresses of the subroutines,

• ,

• label.

Three simple small programs can help to compare the

performances of every case.

 Case #1

 Case #2

 Case #3

Every execution is launched by then stopped by

after 60 seconds.

 Count during 1 mn
 Result (+1) Steps Ratio
Case #1 538 3 179.33
Case #2 299 5 59.80
Case #3 350 6 58.33

LRN Programming my TI

 93

The test seems to prove, except (Case #1), that the relative

addressing (Case #3) would appreciably be more successful than

the absolute addressing (Case #2).

On the other hand, seems interesting, despite rare usage,

because economical in term of steps, this instruction is of the

fastest and would deserve a little more of attention.

LRN Programming my TI

 94

Procedure call

The kind of addressing, absolute (address) or relative (label), is

usable with all the conditional or direct jump instructions.

The loop test previously executed would tend to prove that the

relative addressing would appreciably be more successful than

the absolute addressing, but other comparisons bring to refine

this judgment.

For every kind of addressing, 3 cases will allow us of to know

more about it :

 • #1 : Calling a procedure in the beginning of the program

memory,

 • #2 : Calling a procedure in the middle of the program memory,

 • #3 : Calling a procedure at the end of the program memory.

1) relative addressing :

Case #1 Case #2 Case #3

LRN Programming my TI

 95

2) absolute addressing :

Case #1 Case #2 Case #3

Each program is launched by () then stopped by

after 60 seconds.

 Count during 1 mn

 Case #1 Case #2 Case #3

relative 224 66 32
Addressing

Absolute 208 196 186

These programs prove us that both kinds of addressing are

competitive for the low addresses but that the absolute

addressing is faster for the high addresses.

LRN Programming my TI

 96

The calculator and its statistical functions can serve us to make

an analysis of tendency :

1) For absolute addressing, we will introduce our sample :

Step address X/T count STA

We can calculate various values of y (count) of the regression line

by introducing various values of x (step address) followed by OP

14.

 gives 207,…

 gives 204,…

 gives 202,…

and so on until 459.

2) For relative addressing, we will introduce our sample :

Step address X/T count STA

LRN Programming my TI

 97

We can calculate various values of y (count) of the regression line

by introducing various values of x (step address) followed by OP

14.

 gives 200,…

 gives 180,…

 gives 160,…

and so on until 459.

We obtain the following data :

This graph confirms the performance of the absolute addressing.

LRN Programming my TI

 98

LRN Programming my TI

 99

Data

LRN Programming my TI

 100

LRN Programming my TI

 101

Data structure

Data are displayed on 10 digits with eventually the minus sign.

In the case of display in scientific notation ()the mantissa is

shown on 8 digits and the exponent on 2 digits with possible

display of minus signs (mantissa and/or exponent).

In every case, the internal management of the registers stays the

same: the mantissa on 13 characters, the exponent on 2

characters and 1 character to express the signs.

Let be a total of 16 characters (or 2 bytes).

Value Signs

of sign Mantissa Exponent

0 + +
2 - +
4 + -
6 - -

LRN Programming my TI

 102

Data analysis

The memory of the calculator is shared between the program and

the data. This partioning is modifiable () to

distribute the memory between the program steps and the data

registers :

OP 17 TI58/TI58C

0 479-00

1 399-09

2 319-19

3 239-29

4 159-39

5 079-49

6 000-59

By taking as reference the TI58, we notice that 480 program

steps correspond to 60 registers.

A register so takes the place of 8 steps.

We have either 60 registers of 16 characters, or 480 steps of 2

characters : The TI58 thus has 960 characters of usable memory.

(1920 for the TI59)

In the case of a partition TI58 “239-29” (

) we have 480 available bytes for the program (240 steps)

and 480 available bytes for the data (30 registers).

LRN Programming my TI

 103

This distribution between program and data authorizes us to

make an equivalence between steps and registers (for the

TI58) :

• the register 00 correspond with steps 479, 478, 477,

476, 475, 474, 473, 472.

• the register 59 correspond with steps 007, 006, 005,

004, 003, 002, 001, 000.

• etc …

 Steps Steps Steps Steps

Reg from To Reg from to Reg from to Reg from to

00 479 472 15 359 352 30 239 232 45 119 112

01 471 464 16 351 344 31 231 224 46 111 104

02 463 456 17 343 336 32 223 216 47 103 096

03 455 448 18 335 328 33 215 208 48 095 088

04 447 440 19 327 320 34 207 200 49 087 080

05 439 432 20 319 312 35 199 192 50 079 072

06 431 424 21 311 304 36 191 184 51 071 064

07 423 416 22 303 296 37 183 176 52 063 056

08 415 408 23 295 288 38 175 168 53 055 048

09 407 400 24 287 280 39 167 160 54 047 040

10 399 392 25 279 272 40 159 152 55 039 032

11 391 384 26 271 264 41 151 144 56 031 024

12 383 376 27 263 256 42 143 136 57 023 016

13 375 368 28 255 248 43 135 128 58 015 008

14 367 360 29 247 240 44 127 120 59 007 000

We can verify by the practice this logic of correspondence.

LRN Programming my TI

 104

In “calculator mode”, we enter :

Keys Display

 159.39 changes partition

 3.14159265 PI

 stores in register 30

 239.29 changes partition

 239 31 Programming mode

We will analyze steps, backwards :

The display gives us 239 31 then …

• gives 238 41

• gives 237 59

• gives 236 26

• gives 235 53

• gives 234 59

• gives 233 00

• gives 232 00

Thus :

 Mantissa Exp. S.

Reg. 30 3 1 4 1 5 9 2 6 5 3 5 9 0 0 0 0

Steps 239 238 237 236 235 234 233 232

LRN Programming my TI

 105

Internal registers

The internal registers, manipulable with the hidden instruction

HIR, , are used by the AOS pile, the functioning of which is

necessary to understand to avoid the conflicts between a personal

use of these registers and a management made by the calculator

of these same registers.

The following operation uses all the pile, thus all the internal

registers :

2 x (8 - (90 / (3 * (9 - (1 + (45 / (3 * 5))))))) =

An analysis of these registers by means of a program (see

following page) gives us :

Let be all the operands entered until find the first closing

parenthesis.

LRN Programming my TI

 106

LRN Programming my TI

 107

The AOS pile works in the following way :

• A number, followed by an operator, stores the register x

(previous number or intermediate result) in the register HIR of

rank r,

• An operator, or an opening parenthesis, adds 1 to the rank r,

• A closing parenthesis executes the last operator between the

register x and the register HIR of rank r, puts the result in the

register x, then subtracts 1 to the rank r.

Example :

Any intermediate result appears in the display before being put in

reserve in the AOS pile.

LRN Programming my TI

 108

The internal registers HIR are also used by the functions of

alphanumeric printing.

If, in “calculator mode”, we enter :

6 4 6 4 6 4 6 4 6 4 OP 01

3 6 3 6 3 6 3 6 3 6 OP 02

5 2 5 2 5 2 5 2 5 2 OP 03

7 7 7 7 7 7 7 7 7 7 OP 04

OP 05 prints :

We notice the contents of the internal registers 5 to 8 :

• HIR 15 gives .0064646465 (6464646464000034 in internal)

• HIR 16 gives .0036363636 (3636363636000034 in internal)

• HIR 17 gives .0052525253 (5252525252000034 in internal)

• HIR 18 gives .0077777778 (7777777777000034 in internal)

That's why the program of the page 106 collects the registers

HIR to store them in the registers of data 00 - 08 before using

the functions of printing.

LRN Programming my TI

 109

How to practise ?

LRN Programming my TI

 110

LRN Programming my TI

 111

The calculators TI59/58/58C necessary for the practice of the

language LMS are not any more marketed for several years.

Although it is sometimes possible to find a second-hand TI during

second-hand trades or on web auction sites, these opportunities

are rather rare and the state of machines so found is not really

guaranteed, the keyboard tending to "bounce" and batteries

being often defective.

Fortunately the passion of "aficionados" continued over the years,

and the web offers diverse sites proposing interesting

information, some manuals and other documentations, but

especially some substitution solutions, emulators which work on

PC or tablets (MS Dos, Windows, Android, Pocket PC).

An emulator of TI59/58/58C on platform Windows is proposed on

a Web site completely dedicated to these calculators, and it is

henceforth possible to devote to the pleasures of this language by

downloading this free software on

http://ti58c.ift.cx

This site references most of the available emulators and also

gives the links towards the other main sites dedicated to these

calculators.

LRN Programming my TI

 112

LRN Programming my TI

 113

Summary

Introduction ... 3

First program ..5

First steps .. 7

Enter the program... 9

Let us walk… ...11

First test ...13

Storage in memory ..17

Printing...20

Full Program..23

The language...31

Programming...34

Additional keys ..35

Data entry ..38

The arithmetic operations ...39

Erasing ...40

Roots et powers...41

Mathematical functions ...42

Trigonometry...44

Printing...46

Options of display ..50

Data management ...54

Jump statements ...57

Statistics...66

LRN Programming my TI

 114

Function keys ..69

Read / Write..70

Library modules ...72

Special operations..74

Other functions..76

Hidden verb ..77

Summary table of the instructions......................................81

Comparative tests ...83

Reset the registers ...86

Repetitive sequence ...89

Loop test ..92

Procedure call..94

Data ..99

Data structure ...101

Data analysis...102

Internal registers ...105

How to practise ?...109

LRN Programming my TI

 115

Index

|

|X| 38

1

1/X 24, 27, 29, 42, 44

2

2nd 35

A

ADV..............................20, 46
AVR 35, 67, 77

B

BST 34

C

CE 40
CLR 23, 24, 27, 29, 30, 40
CMS................................... 40
COS 23, 25, 35, 44
CP 10, 34, 40

D

DEG..............................43, 44
DEL34, 76
DMS 35, 45, 77
DSZ 35, 36, 37, 64, 65

E

EE35, 51
ENG..............................35, 51
EQ 35, 36, 37, 60, 61, 62, 69
EXC36, 55

F

FIX... 24, 27, 30, 35, 36, 37, 53

G

GE ... 23, 26, 29, 35, 36, 37, 61,
62, 69

GRD43, 44
GTO. 36, 57, 58, 60, 61, 63, 64,

69

H

HIR .. 77, 79, 80, 105, 107, 108

LRN Programming my TI

 116

I

IFF 35, 36, 37, 63, 64
IND .35, 36, 37, 53, 59, 61, 62,

63, 64, 65, 75
INS...............................13, 34
INT...............................35, 38
INV .20, 23, 24, 26, 27, 29, 30,

35, 36, 37, 38, 41, 42, 43,
44, 45, 46, 51, 53, 55, 56,
61, 62, 63, 64, 65, 67, 71, 80

L

LBL..13, 14, 18, 23, 24, 25, 26,
27, 29, 30, 35, 57

LNX .23, 24, 25, 29, 30, 35, 42,
60

LOG .23, 24, 27, 29, 30, 35, 42,
59

LRN 1, 34
LST................... 12, 20, 35, 46

N

NOP................................... 76

O

OP 00 21, 22, 46, 75, 77
OP 01 ... 20, 21, 22, 46, 74, 77,

108
OP 02 ...20, 21, 22, 46, 77, 108
OP 03 20, 21, 46, 77, 108
OP 04 ...20, 21, 22, 47, 77, 108
OP 05 20, 21, 22, 47, 108
OP 06 20, 22, 47
OP 0720, 47
OP 08 20, 49, 74

OP 0973, 74
OP 1038, 74
OP 11 67, 74, 77
OP 1268, 77
OP 1368, 77
OP 1468, 77, 96, 97
OP 15 68, 74, 77
OP 1617, 40, 74, 75
OP 17 17, 40, 74, 88, 102
OP 18 75
OP 19 75
OP 2n 56
OP 3n 56
OP 40 75

P

P/R35, 42, 43, 77
PAU................................... 76
PGM36, 73
PRD...................35, 36, 55, 80
PRT 20, 24, 27, 30, 46

R

R/S . 14, 18, 23, 24, 27, 28, 29,
30, 59, 60

RAD..............................43, 44
RCL . 18, 23, 27, 29, 30, 36, 42,

54, 79
RST 60
RTN.. 23, 24, 25, 27, 30, 58, 59

S

SBR . 23, 25, 29, 30, 35, 36, 37,
58, 59, 69

SIN23, 25, 35, 44
SQR................................... 41
SST 34

LRN Programming my TI

 117

STA 35, 67, 77, 96
STF................... 35, 36, 37, 63
STO 18, 23, 29, 36, 54, 79
SUM..35, 36, 54, 55, 56, 79, 80

T

TAN 23, 25, 35, 44

W

WRI.23, 24, 25, 26, 27, 35, 70,
71

X

X/T 23, 26, 29, 54, 96
X214, 23, 29, 41

Y

Yx35, 41

