The HP-65.

J Bradley Flippin
5044 Park Rim Dr
San Diego CA 92117

Using the parenthesis form
of algebraic notation, the
calculator’s hardwired
software analyzes the
problem as stated in a
“natural’ form.

Infix notation has opera-
tors written /n between
two operands.

Postfix notation finds an

operator following nota-
tion of two operands.

On September 16 1975 Texas Instru-
ments announced the latest entry in their
series of sophisticated pocket calculators,
the SR-52, exactly 20 months after Hewlett-
Packard announced their HP-65 fully pro-
grammable unit. Richard Nelson described
the HP-65 in the December 1975 issue of
BYTE. The purpose of this article is to
provide some additional information on the
new SR-52 and to provide a comparison to
the HP-65.

To the casual observer the two units look
very similar. Both are of the hand held
variety, packing a tremendous amount of
logic and memory into a small package. The
SR-52 weighs in at 12.3 ounces while the
HP-65 weighs only 11 ounces, One of the big
differences is the retail price. As of this
writing, the SR-52 retails for $395 while the
HP-65 retails for $795 (although it can
sometimes be obtained for $695 if one looks
hard enough).

Notation

Other than the differences in price and
keyboard (which will be discussed later), the
other big difference is in their logic systems.
Hewlett-Packard uses Reverse Polish Nota-
tion (RPN) in their line of pocket calculators
while Texas Instruments has stayed with the
algebraic (or infix) notation used by the rest
of the calculator industry. It is interesting to
read the literature because each company
sets forth a very convincing case for its own
system. Texas Instruments put it this way in
their SR-52 flyer:

The SR-52:

Another World’s

To the casual observer, the
HP-65 and the SR-52 look
very similar; the big dif-
ference is in their logic
systems,

“And to make it more confusing, a
good case can be made for both by the
careful selection of sample problems.
In truth there is no ultimate answer,
Either system can be operated with
ease by the experienced owner. And
either can be a boon to the simple
solution of the most complex prob-
lems. Many practiced users of RPN
now swear by it. But owners of alge-
braic machines can find RPN awkward
and confusing. It boils down to indi-
vidual preference.”

Hewlett-Packard has an excellent paper
comparing the two systems from their point
of view; it's entitled “ENTER vs EQUALS"”
(Publication 5952-6035). There is no
answer, as Texas Instruments has pointed
out, because both systems get the job done.
As a result, this is sure to be one of those
topics that will keep their respective advo-
cates trying to ‘‘convince” each other for
years to come.

What are the main differences between
the two logic systems? For the benefit of the
reader, it might be well to spend a few
moments describing the two systems (some
say there are actually three systems because
the algebraic system has two variations).

Algebraic (Infix) Notation

The simplest system for the novice is the
algebraic system because it is the notation
the average person has been taught in school.
It is also known as infix notation. Itis based
on solving a problem in exactly the way itis

Smallest

commonly written. For example, let's solve
the problem 5 + 4 = ?. The operator keys the
data in exactly the way it is shown. He
pushes “‘five”, “plus”, “four” and then hits
the “equal” key and the answer appeais in
the display register. In reality the calcula-
tor’s program maintains two internal regis-
ters, one of which is displayed. Pressing the
first (five) key enters the data into the
display register. Pressing the second (plus)
key transfers the data to the second register
which is also known as the accumulator. At
this point the number ‘“‘five"” is in both
registers and an internal switch has been set
telling the logic that the next number is to
be added to the accumulator when the time
comes for the next arithmetic operation.
The second number (four) is now entered
into the display register, At this point the
accumulator contains a ‘‘five’’; the display
register contains a “four” and the “plus”
logic is set. To get the answer the operator
simply presses the “equal” key which tells
the logic circuits to perform the pending
operation on the data in the accumulator,
place the results in the display register and
clear the preset function logic. Chain ma-
nipulations are possible by simply pressing
another function key. Thus, the process can
go on indefinitely. For example: 5 +4 =9 x
2=18—-8=10 (etc.).

The operator can accomplish the same
task more easily by eliminating the “equal’
key each time. After “five”, “plus”, and
“four”, the operator could press the “plus”
key directly. The same sequence described

above will take place, except that the “plus”
logic will again be set (actually, any function
could be pressed). Thus, chain manipulations
are possible in this way, also. For example: 5
+ 4 x 2 - 8 = will provide the same results
(10), but the number of steps needed is cut
by two.

This is simple algebraic logic in that it
does not use parenthesis to determine the
precedence order from the entered data. A
modification to the algebraic notation can
be made by adding parentheses to help
define the problem. For example: The prob-
lem 5 x 3 + 4 using simple chain manipula-
tions will result in an answer of 19. How-

-ever, if the operator wants to perform the

summation first, then he would have to set it
apart by parenthesis in this manner: 5 x (3 +
4). Now the answer is 35. Note also that the
same result could have been obtained by
rearranging the problem to read: 3 + 4 x 5.
Now simple algebraic chain manipulation
will result in an answer of 35 because the
summation is performed first.

Parenthesis processing requires additional
internal registers to hold the intermediate
results. However, the process is similar to
that described for the simple algebraic sys-
tem. The only difference is that when the
operator keys in the parenthesis, it tells the
logic Lo “hold off” on the chain manipula-
tion process until the matching parenthesis is
found.

One might wonder why parentheses are
needed because simple inspection of the
problem will tell the operator that he must

37

Photo [: The SR-52 Cal-
culator. Like its cousins in
the microcomputer and
large computer world, the

SR-52 has magnetic
recording fealures allowing
the user to purchase and
build a library of software.

A key to economical stor-
age of programs in these
small programmable
machines is use of merged
operations — two key-
strokes which are stored as
one location in memory.

These programmable cal-
culators must surely be the
ultimate in compactness
and ingenuity in packag-
ing.

do the “internal” portions of the problem
first. The use of parentheses to some extent
eliminates the need for such an analysis,
leaving the breakdown of the problem to the
internal logic. It does this through an inter-
nal precedence of calculations called the
hierarchy of operations. There is no hier-
archy in simple algebraic systems, because
the logic simply processes the data as they
are entered through chain manipulation,

; 7)
Stack 4 é 12 12 /
Content | y 4 3 | 3 4 12| 5 5 [12 7/4
X 3 4 12| 5| 5 | 6 | 30| 42
Key 3 1 4 X 5 1 6 X +
Step # 1 2 | 34|55 | 6| 7] 8|9

Figure 1: An example of the HP-65 operations stack in use. This chart shows
numerical contents of the stack elements X, Y, Z, and T while calculating the
problem (3 x 4) + (5 x 6). The HP-65 uses Reverse Polish Notation to

calculate the result, using the keystrokes shown,

Table 1: Detailed Comparisons.

between the HP-65 and the

This table shows specific comparisons
SR-52 in areas of programming capability,

calculating capability and operating characteristics.

Programming Capability SR-52 HP-65
Program steps 224 100
all stack and
Merged prefixes merged comparison
Merged store and recall instruction
codes no ves
Program read/write yes yes
User-defined function keys 10 5
Possible labels 72 15
Absolute addressing yes no
Subroutine capability yes yes
Subroutine levels 2 1
Program flags 5 2
Unconditional branching yes yes
Conditional branching decisions 10 7
Indirect branching yes no
Editing
Single-step yes ves
Back-step ves no
Insert Ves yes
Delete ves yes
Single-step program execution yes yes
Optional lock-in printer yves no

38

A question one always asks when paren-
theses are encountered is how deeply may
they be nested? (Remember, each paren-
thesized level in the problem requires addi-
tional internal storage for intermediate
results). Some systems go four or five levels
deep. The SR-52 is capable of nesting to
nine levels. The following example illustrates
the maximum capability of the SR-52 in this
area:

6XxO+(Ex(12+BxBx(2x(6=(6x(6 +2))))N).

Straight chain manipulation, disregarding
parentheses, will yield a result of 3458,
which isincorrect. The correct answer is 4.5.
It should be noted that the parenthesis
count does not include expressions that have
already been terminated. For example: 6 x
((5+7)+ (6 x9)) is not three deep, but
only two deep because the first expression
(S + 7) was terminated by the first right
parenthesis, ‘)", prior to encountering the
second expression (6 x 9). Internally, each
level of parentheses is like using one level of
the stack in a Reverse Polish Notation
machine,

Reverse Polish Notation

The second logic system is known as
Reverse Polish Notation (RPN). The Polish
mathematician Jan Lukasiewicz wrote a
book published in 1951 on formal logic
wherein he was the first to demonstrate that
an arbitrary expression could be shown
unambiguously without the use of paren-
theses by placing the operators immediately
in front of or after their operands. For
example, (a + b) x (¢ — d) could also be
expressed as x + ab — cd (keep in mind that
ab is a logical notation and does not mean
multiplication but shows only the sequence
of the data). This is a prefix type of
notation. It could also be reversed to provide
a postfix type of notation as follows: ab +
cd — x. (Now you know why the algebraic
system in common use today is called infix
notation, since the operators are in the
middle between operands). As a result of
this discovery, both prefix and postfix nota-
tion have become widely known, respec-
tively, as Polish and Reverse Polish Notation
in Lukasiewicz's honor.

Reverse Polish Notation, as mentioned
above, does not utilize parentheses. As a
result, the solution to problems using this
type of logic must be approached in exactly
the same manner as with any computer
program because it is the same logic used in
all large (and nowadays, small) computer
systems. The programmer moves his data
around into various registers and then, once

it is where he wants it, he executes the
required arithmetic operation.

Hewlett-Packard has arranged its working
registers into what they call an operational
stack. It consists of four registers designated
X, Y, Zand T. A fifth register is called the
LAST X register and is a recent addition to
the HP line, although it is not directly a part
of the stack itself. The LAST X register
holds the last data entry in the event the
operator wants to either see what it was,
wants to use it again, or wants to extract it
from the solution (i.e., entered the correct
data but pushed the wrong function. The
operator simply presses LAST X, the inverse
of the previous function and then the
correct function).

The four operational stack registers have
special functions and operate as an inte-
grated group. The X register is the data entry
register and is the only one that is displayed
(For those who have used the HP-9100/9810
series, they displayed the X, Y and Z
registers simultaneously). All of the trigono-
metric and some of the transcendental func-
tions are performed directly in the X register
(i.e., Tn x). The Y register can be thought of
as the accumulator. All mathematical opera-
tions are performed in this register. Those
transcendental functions which require two
registers use both the X and Y registers (i.e.,
yX). The Z and T registers are temporary
storage registers and no mathematical opera-
tions can occur in them, Data are moved to
and from them as required during the
solution.

If one uses a concept such as an opera-
tional stack, it sometimes proves necessary
to move the data around within the stack.
To perform this function, Hewlett-Packard
has designated a special set of data move-
ment keys which do not appear (nor are
they required) on the SR-52. For example,
ROLL UP and ROLL DN allow the contents
of the stack to be shifted up or down one
position (in much the same manner as a
circular shift or rotate instruction). When
shifted up, the data in the T register goes
into the X register and vice versa. The
ENTER (or UP) key literally pushes the data
up. Thus, the contents of all registers are
moved up one, with two exceptions: The
original data stays in the X register and the
data in the T register is destroyed by the
data from the Z register. As a result, if the
operator desires, the same number can be
placed in all registers by pressing the
sequence: (data)(UP)(UP)(UP).* Figure 1 is
an example of the use of an operational
stack for the problem (3 x 4) + (5 x6). The
ENTER (1) key breaks up the solution by
moving the intermediate data up into the
stack where it is saved until needed. In

Table 1 (continued):

Calculating Capability SR-52 HP-65
log, Inx ves ves
10%, e* ves ves
Xz yes yes
NG ves yes
Yy yes no
128 yes yes
1/x yes yes
x! (factorial) ves yes
Trigonometric functions yes yes
Degrees-minutes-seconds to decimal
degrees conversion yes yes
Degree, minute, second arithmetic
(+, =) no yes
Degree/radian conversion key yes no
Polar/rectangular conversion yes yes
Octal conversion no yes
Absolute value no yes
Integer, fraction part no yes
Built-in 7 value precision 12 digits 10 digits

Operating Characteristics
Angular modes 2 3
Fixed-decimal option yes yes
Calculating digits 12 10
Digits displayed (mantissa + exponent) 10+2 10+2
Data memories 20 9
Memory arithmetic (+, —, x, <) ves yes
Exchange x with vy no yes
Exchange x with data memory yes no
Entry mode algebraic RPN
Max. number of pending
operations handled 10 3
Number of keys 45 35
Indirect memory addressing yes no

addition, the HP-65 has a special feature of
automatically inserting an UP function prior
to any data entry that follows a functional
operation. This can be seen between steps
four and five in figure 1. Notice that the
intermediate result (12) moved up auto-
matically as the five was entered. The
operator must, however, ensure that he does
not move up more than three intermediate
results, which is the HP-65’s limit (without
using the data storage registers). In com-
parison, the SR-52 can handle up to ten
pending operations.

As a further assist in manipulating data in

39

*NOTE: For examples of key-
stroke sequences, the key
name or a description of input
(such_as “UP") is enclosed in
parentheses.

And Now, a Printer for the SR-52

On January 7 1976 Texas Instruments Inc, Calculator Products Division,
announced the new PC-100 print cradle for the SR-52 calculator. The
product is a desk top unit with a 20 character per line thermal printer using
2.5 inch (6.35 cm) thermal printing paper available in roll form. The PC-100
interfaces to the calculator and expands capabilities to include program listing
and execution trace capabilities. The listing allows a permanent human
readable record of the program to be made automatically;a trace documents
each calculation step of a program as it is performed. An extra feature is that
the calculator can be locked into the base provided by the printer, making the
entire system less likely to be pocketed by unscrupulous individuals. All this
function is available for only $295, and the unit will be sold through the
usual TI calculator distribution channels (direct mail and retail stores).

For further information on the PC-100, contact Texas Instruments Inc
PO Box 5012, Mail Station 84, Dallas TX 75222 (Attn: PC-100).

40

the stack, the HP-65 has an EXCHANGE X
AND Y key (x ™ y) which allows the
operator to interchange the contents of
these two important registers. This is handy
when encountering operations where
ordering of operands is vital, as in division.
Using this operation, it is also possible to
reverse the sequence of the data in the entire
stack: (x<3y), (ROLL UP), (ROLL UP), and
(xZ>y); (ROLL DN) could have been used,
if desired.

Function Selection

The next area of interest is the keyboard
itself. The SR-52 has 45 keys where the
HP-65 has only 35 keys. Both machines use
the “‘second function” type of system which
allows one key to have two meanings. The
SR-52 uses the symbol “2nd” while HP uses
“f”, In addition, the HP-65 also has a “third
function” key designated “‘g” which allows
all of their keys to take on a third meaning.
Both units have an inverse function key
designated INV on the SR-52 and =1 on
the HP-65. This is handy for finding the
ARC SIN of a number. The operator simply
presses: (2nd) (SIN). A comparison of the
photographs with this article will reveal
other differences in the keyboard layouts.

Operation Codes

The key to economical use of storage in
this type of machine is the application of
merged operations which allow one storage
location to accept a prefix, when required,
along with an associated instruction code.
This is possible in both units; however, only
the HP-65 allows merged storage and recall
instructions. A practical relationship
between the two programming systems can
be obtained by using the problem on page
74 in the HP-65 Owner’s Handbook as a
comparison. It is a financial interest problem
containing 22 storage and recall instructions.
The problem requires 68 memory locations
in the HP-65, while in the SR-52 (neglecting
any translation due to logic systems, which
is left to the reader as an exercise), it would
require 90 memory locations. The difference
is due to the SR-52’s lack of merged storage
or recall instructions. This may be one of the
reasons Texas Instruments made their pro-
gram memory over twice as big as the
Hewlett-Packard’s.

Both wunits use a similar method of
designating their decimal numeric instruc-
tion (or operation) codes. With the excep-
tion of the digit keys, the instruction codes
for any key on either unit can be found by
simply counting down the left column to
that row and then counting across to the
particular key. Thus, on the SR-52, the

instruction code for'Enter Exponent (EE) is
52 while the same function on the HP-65
(EEX) is 43 (this can be verified from the
two photographs). The digit keys retain their
_own values (i.e., one is 01, two is 02, etc.).

Comparisons?

There are so many features of both units
that it is difficult to say any one of them is
the big feature; however, the fact that they
can both record and read programs on small
magnetic cards certainly ranks high on the
list. A detailed features comparison is found
in table 1. Because of the SR-52’s large
memory, it requires two passes to read or
write the card. The card is inserted in the A
direction first and then turned around (not
over, as the oxide must remain face down)
and the B side is entered. Both units contain
a recessed card holder between the display
and the five special function keys which are
labeled A through E. The cards have an area
upon which the operator can write to
designate the functions of the special keys
for customized programs. In the case of
pre-recorded programs, the data elements are
also pre-printed on the cards as can be seen
in the photograph.

Last, but not least, is the one big feature
of the SR-52 which is not yet available with
the HP-65 system. In early 1976 Texas
Instruments intends to market the PC-100
which is an optional desk top lock in printer
for use with the SR-52. It looks like a
regular desk calculator with the typical
adding machine type tape printing unit on
the left and a space on the right for the
SR-52. The unit includes a key lock so the
calculator cannot be “lost.” It will allow the
user to list out entire programs, print the
results of calculations, and advance the
paper. These functions are already on the
SR-52’s keyboard as second functions
(LIST, PRT, and PAP, respectively).

This short article has not covered all
points of comparison between the two cal-
culators. As can be seen from table 1, there
are many areas that have not been discussed.
The purpose has been to inform you about
these two interesting computer systems,
However, if you feel teased and want to
investigate these fascinating machines
further, the manufacturers would love to tell
you where you can see them in your
community. Both have toll free (WATS)
numbers you can use: Texas Instruments
(800) 527-4980 [in Texas (800) 492-4298],
Hewlett-Packard (800) 538-7922, ext 1000
lin California (800) 662-9862|. These pro-
grammable calculators must surely be the
ultimate in compactness and ingenuity in
packaging.m

a1

