The Buried Gold in the SR-52

Clif Penn
911 Northlake
Richardson TX 75080

About the Author

Clif Penn reports on
these features as an enthu-
siastic user of the SR-52.
Though he is employed by
Tl's Central Research
Laboratories in Dallas, he
wrote the article as an
individual user, and much
of jt is based upon infor-
mation passed around by
the SR-52 users’ grapevine
in Dallas.

In the April 1976 issue of BYTE, a good
overview comparison of the programmable
SR-52 and the HP-65 was presented by
Bradley Flippin [page 36]. Now some hid-
den but powerful features of the SR-52
organization will be discussed. At this time
these features have not yet appeared in the
literature Texas Instruments supplies with
the SR-52, but the capabilities are worth
documenting for readers who use this cal-
culator.

Register Organization

The SR-52 is arranged internally with 100
programmable registers numbered 00
through 99. The first 20 registers (00 to 19)

Clearing

Register Mormal Use Function
00-19 Data Storage *CMs
20-59 Internal and not -

externally available
60-69 Operational stack CLR
70-97 Program storage with 8 Affected by

program steps per register program edit
98-99 None None

Table 1: SR-52 Register Organization. The
documentation of the SR-52 mentions user
programmable data storage in registers 00 to
19. In fact, the internal organization of the
machine has a total of 100 registers allocated
according to this map. Registers 60 to 69 are
the operational stack used in parsing alge-
braic data entry (see BYTE's February 1976
issue for two articles on the subject). Reg-
isters 70 to 97 normally store the calcula-
tor’s program with 8 program steps per
register. Registers 98 and 99 are “free’” and
can be used for temporary data storage or as
a flag. (The registers from 20 to 59 are not
available for user programs.)

30

are those normally used for data storage and
called from the keyboard such as RCL 06,
STO 19, *EXC 05 and so on. All 20 of these
user data registers are cleared simultaneously
by pressing *CMs. [All secondary functions
are shown with an asterisk (*) convention
rather than writing (2nd) (CMs).] Many
users have discovered by accident that there
are other registers which may be accessed
from the keyboard but have an incomplete
understanding of how to take advantage of
them. Table 1 shows a detailed listing of the
registers, their conventional use and how
they are cleared.

All of the registers except the internal 20
through 59 can be used in exactly the same
way as the conventional 00-19, that is,
indirectly addressed, conditionally addressed
and so on.

Operational Stack Registers 60-69

If you use a "0 strike over rather than
the clear button, registers 60 to 69 become
available. Remember, however, that any
time a “(” is actually necessary in your
program, you use these registers in order
from the bottom up. It is rare to use all
levels of internested brackets, so start from
69 and work down if you need extra storage.
(When in doubt, do the problem manually
and RCL the register of interest and check
for O contents.)

Program Storage Registers 70-97

The program storage registers 70 through
97 normally store the program at 8 steps per
register. These registers are loaded either
manually or when you read a prepro-
grammed magnetic card. In addition they are
recorded on the magnetic card in the WRITE
mode. This allows you to store data on a
magnetic card for later use or updating. The
statistics program used as an example incor-
porates this feature. Any time you delete or
insert program steps after storing data in the

program memory, you will alter the register
contents. BEWARE! To make life easier,
table 2 shows the program locations nor-
mally stored in each register.

If you use this feature regularly, here are
some memory aids — 8 program steps per
register; the first register stores locations
starting with 000 (ending with 007 so
register 70 may be associated with this);
register 80 starts with location 080; register
97 is last.

Bonus Storage Registers 98-99

There are numerous cases when you wish
access to the CLR and *CMs feature without
losing a constant you may be using regularly.
Registers 98-99 are quite useful for this.
None of the clearing functions affect them.
Power off of course kills everything. You
may encounter cases (as on the included
programs) where you desire the effect of a
flag but are still free to use CLR, ¥*CMs, and
reset. Although not nearly as efficient as flag
usage, you can simulate a flag condition by

Reg Loc Reg Loc

70 000 - 007 80 080 - 087
71 008 - 015 81 088 - 095
72 016 - 023 82 096 - 103
73 024 - 031 83 104 - 111
74 032 - 039 84 112-119
75 040 - 047 85 120-127
76 048 - 055 86 128 - 135
77 056 - 063 87 136 - 143
78 064 - 071 88 144 - 151
79 072 -079 89 152 - 159

storing any nu

mber in register 98 or 99 and

use the following sequence:

..... *LBL
¥EXC *1?

9 *EXC
9 9

*if zro 9

*]’

*EXC

9

9 .

Just as flag usage, this preserves the data in
the display register for further use following
the conditional branch instructions. Keep in
mind you may need to clear 98 or 99 as an

Reg Loc

90 160 - 167
91 168 - 175
92 176 - 183
93 184 - 191
94 192 - 199
95 200 - 207
96 208 - 215
97 216 - 223

Table 2: Program Storage
Registers and Locations
Stored. This table gives the
correspondence between
program step numbers and
register locations 70 to 97.
Note that editing opera-
tions shift program data
throughout this region, so
any use of the program
storage registers for data
should be avoided when
editing programs.

A Note About Special Features to Save Program Steps

As a preamble let me emphasize forcefully that
short routines should be written with parentheses
in normal algebraic form without worrying about
the "bells and whistles.” This will use more
program steps than needed but less time in
programming and debugging.

Invariably you will encounter long programs
where you need every ““twist of the screw’” to
reduce program steps. The main thing to master is
the algebraic hierarchy (pages 46-48 in the SR-52
Owner’s Manual). Except as altered by parentheses,
the order of operations is:

1. Immediate function evaluations (sin, cos,
tan, etc).

2. Exponentiation and root extraction [xz, vX,
NCNRE

3. Multiplication and division.

4. Addition and subtraction.

5. Perform operations from left to right on
each hierarchy level.

For example:
(5x7)+{8+2)=39
with or without the parentheses while

(5+7)x(8-2)=72
but
5+7x8—2=59.

One equal sign at the end of the eguation may
replace several right parentheses one might require
at the end of an expression.

Another useful feature involves recalling the
display register contents by the use of either math
functions or memory functions.

3+ \X3_= may be programmed 3 + \/’x_=
3 + 1/3 may be written 3+ 1/x =
3 + 3 = cannot be keyed 3 + =

but rather 3 + RCL = 6.

Any of the memory functions may be used in this
“dummy instruction’’ manner. On occasion you
may wish to store an intermediate result at the
very same time as you use the display register
contents like this:

4 x5+ STO 01 x 3 = 80,
20 stored in register 01.

The “+" sign causes the first multiplication to take
place, the STO inserts the display register contents
back in the equation and the 01 directs 4 x 5 = 20
to be stored in register 01. Had you wanted 5
stored instead, you could have used a dummy
memaory instruction — — —

4x5STO 01 + RCL x 3=180,
5 stored in register 01.

31

SR-52 l- rre STD. DEVIATION (G BIN:

E 0
Useflnstructlous\{ PRO CLIE _PENN_ CL mﬁﬁ_—s'zat .
ne STANDARD DEVIATE . r

v on (G Sws) pace | of 2 [roc Jcooe] kev [comments]Loc [coe] kev [commenTs] Lo [cooe] kev I
000 ! COMMENTS| LABELS
r B | n2| 46 MLBL 03
AVE L DevJ‘_ JL::%JM—T:] L 1 _i . is| g | swven T REL DisPLAY o3| 3 » AVE
| . — — 42| sTo | oatR [P0 g S 75| - s DEV
STEP Pﬁcczouns o ENTER PRESS _D_I\.PLJ\Y_— 00| O luast ‘ 03? 2 . g; - 2
— — — = OLAST %
OFPERATIN G »QEG;:.TEW;_ o] o 040 sﬁm EnTRY ﬂ HLT [Fs2] 30[*YZ £ ENTRY
ARE _ArwaYs RO1,RO2,ROY, |) 00| o |Z% i 421 5To| st0_ 3+ '
| |Rot STORES THE Sum IR oL | T A3 Rl s 3 permedve.
| - : .)] 40| AT c
| loF AL EnTRIES ; RO2 | | T 1 [Clas X oo 0 | zz | Iy T
STORES 7THE SUM OF | | i ™ o MO FEZT - _|._ [a) 07| 46 | *LBL £ Mem ¥
| |THE SQUAREs DF ALL I 4 02, 2 43 Ré.l. 4;-: 2B PE /e, oS
——— AeL L L I
ENTRIES * ROB Srores —— oif 1 “e2| 00| © 09 R;L' LT
? S I - — 44| sum| Numeee o3 3 e
_ \rHE wNunmiEe o DATA | [Tool 0 lewrnes 95 = 09 9 | pev o gx? |
| Envrr/ES. — a3 3 | n 42510 S8 »n |
. G [Tealrer ol 1 4n, B i
— e — L o | ool O |pisPay ™ 09| & e g; é ave =
—_——— —Rot I I 03 w® 2
| AVE .:“-R'-O_ =B | NN] 181 H-?-'T . 4;: o D 3s,_= Gl 1% |
— . | RPTANE 12 ALOL w1l Bl HLT o | |
||—.._. I A R B - . Jal_m-c = y: B | Dev 46 m.BL | memorv| = 3 | |
— N i a2 510 EE(EMF G?} Rel 7 10#E’ | sin_ | BN
. Isto bev:= \(1oz dz=0?T | | | AR N €0Mf{flg| swier)» o
| - Y et i L T — ool o |remove s 100, 0 |resmoec)? 4
— . T AL () R | o] +/ d e D1 | T 0 g
L) | — 1 l i SU‘ PREVIOUY 43| RCL oi| | |oReER | o
rr — | M l'-'wn'.m_uFs oo, O %L 03] 3 " I i
— 00| © |Frowm in| oI -
- - - . | | ol 1 5 B | -)i 2| STD | BaTER 6 W]
l—— -+] | 40w %z }F— 45‘;“1 (zx o9 9 NEW | v et
— | - 0!
N S EN S S _ | [%4 +/~ | pev 43| RCL | 0B 8 | BW v 6y
| ! P o — | 44| suM oo 0 90/if zro H 9
| | | D D ool O w o3| 3 n B9 *3" | ozEeesa| FLAGS
| EN NN S s [o2 2 '5"4) 75| = |if o Aw 3oaT
I o1] 1 : 07, 1 gﬂ‘r '
| | | I Y 1 "2 98] = |phan 7] 2
!—]- — B]_ 44| SUM :: é‘_ 11 = Emeor) 3
. EE— g |_lool © 00 O L Teuas INsTRUMENTS |-
User Instruciions) nme_STD, DEVIATION 2 o2 SR-52 ¥
. PROGRAMMER ___CLIE PEMN PAGE < O e — {g
e EVIA N —s/isf1.— Coding Form "X~
e I pacE_2_oF2 Loc KEv |commENTS| LOC [coDE] KEY
[[®B= 89| %37 lcomments] Loc [cone] kev [comments] Lap 1
[o/a | N [Bu#® [Mew T T —] 12|89 |*3 | oal 9 A — : ELs |
T L T ——F— 43| ReL | oo o i - 1 |
[] 09 9 | Locres| | 36" kol RCL| Find |® |
sTEP PROCEDURE ENTER PRESS DISPLAY 08| 8 | wew B a8 {g:l ':-20’- o ! n 3 |
03 | af — |
BIN _CONTROL | ROUTINE E g; ; 1w 00l 0 | woi e _Hi*ﬂ“m'":
ElrsT PRESS OF WE’ P A DD ;Z qo Rox’ 1 | shifs |+
_(Using Bin|# : 5] no | goyl | ')
1 N 4 As AN EXaAMPLE) P g?) o k] e STo ROz ! 1 T n
54 3 292 }——: .
| T
Bin 21 Bin £ 4 2|42 | sT0 g? : o :
Rol Tna== | Rio £ts 09 9 [3¢eum 94 é}_ : AEQSTRRS
Roz fhg—> Rit ERT g? 2 ez 44 SUM ' .
& "
RO3 Nie—— Riz Ny ol ?R % 09 3 ! .
1615 09 202
| w04 | 4 | dsz T ki
RESULT :g ,_fa : L_” ol | —T :
Diseial = 4 Ryl fue- wiod & =
b LoP"
Rol £%e Rio ol ! wERY 5_5"? joes_ H I =
2 w04 4 tn | 207 B | _ o8
Roz Z A4 Ry =X2 '—”]— To Al [*LBL | T~ -
Roa Na TN I:g & | srore - 893’ | Fiasn | ! .n l
| Rer | smates|™l Bs| + Efeor - | -
| 09 9 8s| + =
NEXT PRESS OF xE’ — 8 8l HLT NI
| 50 5t fly A Le ! =
RESTORES ORJ|GINAL ool 0 L | "
DATA _LOCATIONS ASSUMING |_lst[wmr walas g; ’ =
NO DELIBERATIE ACTIONR AS ol ”}u 09 9 Bin T
RESET FLaG 0 (Such | As WW-Z-Z-VSD i 0? 8 | # | .
+rSet orR MV ast flal0) 00| o E‘.:_';;_ i
¥ 42[s10 ™ 14] D =
__ng g 43| ReL :
3 ? T Oﬂ g LAST “ﬁﬂ ”
-l 00
36¥IND [+ smr 81| HLT z 2
43| RcL| toor || LBL Texas INSTRUMENTS || ©

32

-~y
-

Figure 1: Standard Devi-
ation Program with 6 Bins.
This program allows one
to accumulate the statis-
tics for six different sets of
data. The "“bin control”
routine selects which of
the six variables is to re-
ceive new data. This rou-
tine Is used to exchange
sets of data.

initialization if used in this

manner.

procedure

Standard Deviation with 6 Bins

This program may be used conventionally
without the memory management technique
to calculate averages, standard deviations
and normalized standard deviations. With
the memory management shown, up to six
different bins of data may be contained. For
example, six different clerks could be com-
pared as to their average orders filled as well
as the consistency of their performance.
Using the last program card you can store
the results and update as often as desired.
Likewise you can delete data in an orderly
manner to maintain a four week running
average and so on.

The user defined keys are used as shown
on the program sheet. The bin exchange
key— —

*E’, performs the bin exchange function
in a “flip flop"” manner. The bin number is

entered from the keyboard, say bin #4. The
first time *E’ is pressed, registers 01, 02, 03
exchange contents with registers 10, 11, 12
respectively. This places the data of bin 4 in
position to be updated by the stored pro-
gram. The next time you press *E’, regard-
less of what you think you told it, the
memory contents are automatically returned
to their proper order with a 1 displayed to
point out that bin 1 is in the update
position. Any time 0 or a number larger than
6 is used as a bin number the display flashes
an error.

Each bin consists of three registers which
store (1) the sum of all the data entries, (2)
the sum of the squares of all the data entries
and (3) the number of datum points. The
equation used is illustrated on the coding
sheet.

Memory to Magnetic Card Program

A program can be written to magnetically
record up to 22 memory registers, but this

Figure 2: Memory Management Program. When it is desired to save the data prepared by a program such as the standard

deviation program of figure 1, this memory management program is read into the “'A’

" side of the calculator. Its purpose is to

copy data from the user data registers (M) to program registers (CARD), and vice versa under control of two keyboard
commands. To save data, copy the user registers into the program registers (M - CARD) and write the program on both sides

of card; to recover this data, read both “A’’ and “B" sides of the card, then perform the (CARD—>M)

both sides of the standard deviation program to inspect these data.

transfer. Now load

5“.-52 M \ § 5“-52 s
Do bnstructions V& IARBES por (i s ot B rom 6
e Mgmo_g‘f MANAGEMENT _ (Gx3) pace | oF 4 o '_Lo-c'cone XEY [Ewsmsf'mc bcoosl KEY lommems[[mc cnol_ KEY |oomem—[' LABELS |
“- — . <B= — I ,,;. 46 xLS;_ AL ﬂ.ﬁSl _'_B_ n-c o . A M=+Carp,
e e v QO i e e e s 871" [seser| 42] st0] s L__ 1=
[=care| T_ — T —ewew] T T T T T 1 e[wr end [®ufos o [w] 1
———— - —r—e — - .
rer_r pROCEDURE ENTER PRESS DISPLAY | ——;%— ’;:.- T =87 | gg‘l g isio Pﬂt{m:w - :clﬁlﬁ
L I e l _.'__ B NER RIND| FoR_| o7, 7 | S b
| |TalerE> Fom SFANDARD DEVIATION | +f,;' “";" f:;:j]'!o., S ‘fj o
|ProGrAM wHich| Uses gl BiMs o = T oE i _i o8 B Re PR I °
I I R L
|,__ REGISTERS A:‘Acxf WHEN | BINS N R _MLMEH __1‘_?.*3’: _]) E ‘ [}.I_ ' |
| “m|A2 | STO | nun__l_ _46|rLBL |] REGISTERS
—-1T zq_-E@eqLa&Qm_,_&&a=1. 09 9 | mEm | LI A | MEM | [[% ConrRoL
N (T ! { ! : 09 9| m» |%gl22] mv] TO | 5 g
= _|AS A SAFETY, SIGNAL| A ft:_!r_i!ﬁ_l_ué ______ [['_Alx T_s_ﬂ_uw | 70 i err C’WH_ _fe 1]
w 94| +/- [87n 1" | musr i}
| _ 194] 1 _ B
| |DispLaY MusT |PRECEDE Prals.stnjj& A 5 Aa 5uu\| pee |24 CE | sraer | | N
i +, =, A 1S SUGGESTER. Tois | | | T 70" 9 | foures |43, RCL| WA DAza oo | JI
| TRANSFERS THE COMNTENTS F REGIS | - _'91_3%__. ™% 09 g BLinkmg ReGisTEe | | |
| L 8 PISPLY fe¥)} | o7
/ Yl - 97 _44 sto [0 | [.
Ol THRL /8 1 G/SIERS BQ 7 05 9 |powree, |75 - 19 1 [l : B Ol
IN ORDER. REGISTFRS |BO |70 |97 w09 9 | ol 1w RYE 4 e g
. ARE RECORDEL _ON_ THE K MAGNETIC 58 ndsz. i] loAmA S
| |CARD ALowng |WI/TH THE PloGeaM. |E -+ e ‘;“;. ”}" 8 7 e
| | L L TN LY 717 /ST MR
OB = HO YERRSFR@ OOl OFctl — 42| sT0 sTo_ | |87|ay’ s o3 <
WHEN A /S PEESSED =, 09 9 [oev Tiglwc’ | g | 11 I
| __ logl B |BN# | [42[sTo| w |] | | M+ | |
I_ it | mrset | 1“511'1 o 9 ReL | | I A
L _|AFTER REAPIN|G In B:':TLE SIDES | OF " dc|seL o8l B |romra 1 e
| _THE carp, Pressing E” lrrRalSFERS L 18lsC’] io" > Tl BN o
B NUMBER o7 7 7 | 9
| ob i oebee| Bdcw |7 ol 1 | o | [Ta2
L RBO THRU R 9] PEE | £ < i Q ~ o 8 .EF__!'-..#Z sTo | W | AND [Fiags |
ol THRY PIB| wiTH A IN __THE | |42] sTolmem T l05] 9 |5 | Bo 6N ¢ i
DIspLAY TD S/Gamar THE REGISTERS 00| O |kesime lo9| 9 | Powred [|] | |
100, O |courne 178" | a] i 2 |
ARE AT THEIR HOME | PO|S/T/IONS.: s [% van| frersrek “fro223 — 15—
— [46 *LBL| carD |) TeExAs INSTRUMENTS [_*
| s E fro mem[™y s |]

one records only 18 to match the previous
program. Register 98 is used in a compatible
manner with the previous program to pro-
tect against off loading the updated data in
the wrong order, even if the flags have been
reset, Several safety precautions are used to
protect against losing a long accumulation of
data. When the card is dumped into the
calculator memory, the card still retains the
old data in case of blunders. After the data
are updated, if the registers are in their home
position, register 98 will contain 1. In the
memory to card program this branch condi-
tion is used. Up until this point you have
lost no data that could not be restored. If
you start to transfer memory to card and

find the registers are incorrect, don't panic!
Simply reload the standard deviation card,
press *E' which replaces the registers where
they belong.

To alert you that caution should be used,
a blinking error condition display must exist
to start the alternate transfer of memory to
card with key A. This is readily accom-
plished in several ways but + = is the one |
use. The only keys used are

E — — transfer program storage registers
(magnetic card) to data memory
+ = A — — transfer data memory to

program storage
writing.m

registers for card

34

