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Between the elementary functions accessible by direct
calculation and higher-order equations reserved for the
computer, there exists an intermediate domain where
programmable calculators are useful.

Certain concrete problems sometimes lead to such
equations without this creating an exceptional volume of
calculation. Some have been encountered, for example,
in the handling of small 6 by 6 matrices concerning
medical data. Other technicians are also familiar with
this type of obstacle in their fields. Consequently, the
feeling is that it is worthwhile proposing a convenient
program worked out on the Texas Instruments TI-59 and
designed for sixth-order and lower-degree polynomial
functions.

Independent of the advantages in mathematical terms,
I hope that this article will give the user a meaningful
introduction to this highly advanced calculator. For prac-
tical reasons, the original goals were as follows:

® calculate all the characteristic elements of the func-
tion (roots, maximums, minimums, and points of
inflection where applicable)

® automatically plot the function curve

@ control the program with a single key

Obtaining these conditions virtually eliminates any
chance of operating error, and frees the user for other
tasks once the calculation has begun. This is especially
the case since the main program can be stored on a single
magnetic card as can the printout program. Altogether,
this provides a simplified procedure which nonetheless
permits execution of the successive steps in the following
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sequence:

® obtaining the appropriate boundaries of the interval
to be studied

® choice of the increment

® recall of the maximum error

® calculation of roots in increasing order

® printout of correctly sampled tables of values

All of the above is applicable both for the initial
polynomial and for derived polynomials. Because of the
geometric significance of the derivative, these provide the
maximums and minimums of the function as well as pos-
sible points of inflection,

Given that excessive automation can be inconvenient
in certain cases, a manual procedure has been provided to
permit using the keys to enter the lower and upper boun-
daries of the interval to be studied along with the value of
the increment desired.

After a brief discussion of the calculation principles,
the main program and then the automatic printout pro-
gram for the function curve will be examined. A com-
mentary on numerical applications will conclude the exa-
mination.

Calculation Principles
Here is the type of polynomial that will be dealt with:

Pix) =ax"+ax"" '+ ... +a, (a#0n=6)
where x is a real number and coefficients ao, a, ... a,,, are

known real numbers.
The method used to determine the roots of P(x) = 0 is
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bipartition. This consists of successive dichotomies of the
interval (a, b) chosen with the function being continuous
over this interval. The calculation is performed sequen-
tially, and the step increment is designated by Ax.

To determine the root of the equation which belongs to
the segment Ax, the latter is divided in two, and the
calculator retains that half at whose extremes the func-
tion has opposite signs. The new shortened segment is
further divided in two, and the process is repeated
iteratively until the upper value of the residual interval is
limited by the error limit. The middle of this final interval
represents a root of the function to within the error.

This method provides only a single value in an interval
Ax and requires more calculating time if boundaries a
and b are taken too far apart. If they are taken too close
together, the risk is obviously one of losing a root; the
same applies if /Ax is too large. Therefore we attempt to
eliminate these drawbacks due to too much and too little
by programming Lagrange’s theorem. This replaces a
subjective estimation of the boundaries by a calculation
guaranteeing a reliable interval (a, b).

Let ay > 0 and a, (k = 1) be the first of the negative
coefficients of the polynomial P(x). The following
number as the upper limit of the positive roots of equa-
tion P{x) = 0 can then be used:

k
R=14% B

ap

where B is the largest of the absolute values of the
negative coefficients of the polynomial P(x). Now the
user no longer has to distinguish the two values of x be-
tween which the roots are supposed to fall. The calcu-
lator finds and prints them. To determine the possible
limit of the negative roots of the equation, use x = —z.
This involves changing the sign of the coefficients of the
odd registers. However, if the latter equation has no
positive roots, the initial equation has no negative roots
and the calculator will not provide any.

Optimization of the process is completed by another
method, As soon as a root is found, it serves as the lower
boundary of the cycle of the following calculation. This
sets the increment interval in the new segment to be
explored. The correction is aimed at improving the
reliability of root detection: this is an essential point.

Observe that details of the program code depend on
some of the special capabilities of the TI-59 and PC-100A
printing cradle. Naturally, the reader is referred to the
instruction manual for full details. In passing, it is merely
my intention to mention the decisive factors in my work.

The user has 960 program statements or 100 storage
locations available with the possibility of adjusting their
respective size as a function of the problem. Each
memory block occupies eight program statements. The
standard distribution adopted uses 480 program state-
ments and sixty data-storage locations which will be fill-
ed entirely. The micromemory connects to the calculator
and provides a library of twenty-five programs totalling
5000 steps.

Of the forty functions to which the OP key provides



Listing 1: Main program listing of the polynomial-function
analysis on the TI-59.

: , o OO T LEL s 11 A f08 T O6E 32 39 PRI
access, special mention can be made of the following: 001 16 A 105 4% RCL, E0% OF 02 dlta oe BF
6or =2 ¢ e 18 18 eid 20 20 314 153 18
063 42 &TO 07 % FLn el 8 oF i
i ; 08 47 AT 30 21z 91 31 31
® printout of alphanumeric characters el e A 213 o 182 A7
@ sign indicator apE i 1o 1o, %6 ADY 21_4 il 99 §‘E
.y 07 4% 70 i1 15 215 02 02
@ error lndll:atol' 44 : 0B 1& 13 ;1§ 15 13 95-'.,5_ gg oS 330
¥ i i i 00 43 RLL 1 75 - ZITO00 o gEL
STERmMENRg aLO- VRl ng ok memese p1g 4t 01 114 43 PCL 218 92 i 85
® listing of memory content 041 42570 €15 1707 - 219 86 fx1 3
o 1 4z 19 116 95 = 2200 42 510 Ed4
® listing of labels LEE ib? 3% peT  EEl 07 OF iis
013 42 370 118 59 322 43ReL 126
P, : e . M5 on o0 {19 &8 NOP 222 257
Lastiy, the T register 1s very important. Here, it is possi- .;._fé at ,!' 120 00 0 éxe 42 :ETE. 5::2
ble to store and recall a number and test it withrespectto 217 =% e < g tain gl
the contents of the display register. 018 i ot 122 65 = e g5+ 271
i : g B0 42 P 1 " e o 332
In the final analysis, the TI-59 has the quantitative and ﬂg'f 12 F'l';,- = ;Eﬁ 229 ;g il ‘%f _
qualitative features which prove useful in writing a pro- i Lo e e E o 23 %
= 2 i p f = & =L ot :
gram of the type that is being presented. 024 90 0o 128 38 ADY BxE 20 2 56 3
025 £S5 123 13 I 232 43 RLL e
Main P [ 13 13 € 333 0 02 23e 42 570
ain Frogram (2 TE FrE 131 92 RTH 285 42 370 AT ST
g Pt aviti ges o i 132 75 LEL, . 26 00 0O 340 02 2
ata eniry: 025 &5 oF 133 43 RO 257 185 - T
For reasons of efficiency, the initialization sequence 239 21 =0 23 L gy e T
and data entry is not placed at the beginning of the pro- 0z 2 zi tas B2 AT 340 a2 =70 e 03 3
i 4 . ; i o) = T - B
gram but at statement 066 with the LBL A instructionand {33 33 ¢ip TS gk S s T Bz ias &oD
statement 073 with the LBL B instruction (see listing 1).  93% 11 17 S e Sl el
The coefficients of the polynomial are stored by conven- o3> 43 piL 14 DY 3 G5 22 AW 342 41 01
tional indirect addressing from x* at R,, to x° at R,, with a gg? L= e zj £33 %:g EZ Eg bl T
zero introduced when a corresponding term of a power of gan ae AE 148, 01 €1 28 b; o o,
. [y i = & 2 ) B Frd i B
X 15 HussIg,. o4E 18 9 136 2R OINY U e ) 54 43 ROL
043 65 147 42 SN 25§ 97 pER 355 03 03
: : 044 73 RiL= fag o m 252 U:J i) 554 449 cbi
Evaluation of the polynomial: pas -l o 1% 5% Y52 258 02 0F 37 0 D)
A i § He B + : fale] oL 4z o Kk Ry 1ok
This is the role of the LBL A’ instruction placed at 347 ¢z or L2y 3?‘ By o E2% fr e S0 s g
location 000 to save calculating time, since this sequence gig fal yfé 1 E% ; { F-fi-]: zgg ig S s 9; o2
is called frequently. G50 00 0 184, 7E LG 258 8% 07 e 24 LE
i o s - : G g
o | | LA e
Determination of boundaries and step increment: 423 42 REL 57 iz s8I0 1 43 ROL el
- A e > 2 i L bae il 3 BE I
The calculation is monitored by LBL C which, in par- a5 54 P T S & T 267 24 LE
ticular, uses subroutines RCL and STO and PGM 08 of (2% = =10 S oA -
. . i '. = B 3 < - = e o
the Solid-State Software. After execution of the se- e L 162 0L BL % 266 W BTN LR
3 > i & F18 teax i 267 S0 Il 42 g
quences the following results are given: g@.i. = 510 {63 73 Rox EE% % T 572 03 o
. J = o 11 287 4 L ] 2 THY
i i ; 062 43 FCL tee 22 IWY 270 ©F 07 374 §6 STF
® the lower boundary a is printed out at location 091 03 La 17 167 57 EW - Z7i 7 @k §75 07 o7
e . 054 32 ETH 165 0L Q1 972 o2 @3 I7E Ta PCs
@ the upper boundary b is pr{nted out at lot{at:or_t 099  Gés i [a {8 7 7 555 45 4a 327 03 s
® the absolute value of the interval (b-a) is printed %2 11 @ ol ks L =10 e
. I ¥ 5 ¥ Zr in LTy i
out at IOCBtIOn 117 065 trg {E. ;23 a7 n3 ZTE 59 1371 ;'*5"3‘ 03 0%
® the step increment Ax is printed out at step 124 {22 = 10 Vit e R e s o
immediately after steps 120 thru 122 which contain 071 %2 BT 175 &4 ¢4 279 el a1 aes ng oF
E iy . TS FROLE et = : et ] k]
the variable number of partitions of interval (a, b) 073 [; E ‘E— AL %g? 3% EE 955 LA
or 020 in our listing Do ol e L AT
pap e s
The appearance of a zero as a bounda!ry value means o7e 30 30 f8 75 efe 2 oot 350 0z 2
the absence of roots for the interval considered, the coef- 972 2= FIHi ok L 0 i3 e
ficients of the polynomial being positive or zero. And by 821 12 ¢ 185 33 PCL 589 85 PN 593 90 L3T
three successive calls (PGM 08 A, PGM 08 B, PGM 08 C) ;5 = ALY s S L ol
program C finally aligns the assignments with those of 023 42 RcL 188 72 5T+ sz 35 POM 298 W ADY
; : 055 71 SER tee ol 01 Eer 43 o8 337 42 RIn
the library by storing a at Ry, b at Rg; and Ax at Ros. g 42 210 190 g3 gOF 33: IS E 393 76 LEL
087 &3 HOP 191 31 81 D55 &3 PRT 393 4% D
) 083 94 +- 197 @7 pEZ | 2aa b 1y 40 H o,
Program evecution: (82 4z 810 P23 100 00 . Zar b5 sk 401 00 0
This discussion of the mathematical method used will 2 25 et B L G O PR il
ibi S - 032 T1 SEP 196 43 REL | 300 4% puk an4 000
save tI'}e trouble of describing the principles again. Asfor 732 7! EF 1y bn e b seis b
execution: 034 71 SZER 155 42 3TD . 202 &5 alé 01 |
e S ma e
. I 6 S+ 204 00 © 0% 8 HOP
® LBL RCL ({(statement 133) changes the sign of the ©% 42 =70 0108 i 05 85 = 40% &8 HOP
ffici £ theodid ses Roe. Ris Ru) 0% 18 18 02 95 = 506 F6 FLH 410 €z HGE
coefficients of the odd registers (R.s, Ry, Ry, 9% 93 PET 0% 42 610 G07 Ge DB 411 14 I
® LBL STO (statement 155) plays a complex role. At {58 93 FLL LB L S el
statement 176, it stores the first coefficient whichis 102 & Fin 206 91 01 N BE 0 414 17 Bt
103 08 08 207 22 IHY 31 1f 415 43 FEL
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Listing 1 continued:

8- ) B 430 (M 4 456 A= 18 47e 10 10
417 42 <70 437  #5 = 457 43" RCL 77 93 FRT
418 10 10 #3842 510 498 le le 478 985 ADVY
419 43 PCL 439 13 Ad G939 oy PR 479 52 RINH
420 1% 12 440 4% RCL 46l 43 Rl

42165 % 441 15 ;3% 48l 15 15

L A 442 B9 X 4€2 99-FRT

423 95 = 443 D5 5 463 43 FLL

424 42 &0 444 95 = 4é4 14 14 GOl 1e A

d25 i 445 42810 465 99 FRT 086 11 .8

426 43 FCL dde. 14 14 4e6 43 RLL 02z 12 B

4370 13 18 447 43 PCL 467 1213 Gay 1% €

JE8 85 A 448 1o & 468 ST PET 135 42 FCL
SE0 ) - 449 &5 X 469 45 RLL 155 42 570
430 95 = 430 0o © 470 2 le 283 14 D

431 42 =70 45y 5 = 471 98 pRT 25 15 E

432 1z 12 452 47 270 472 4% REL 423 48 0

433 35 poL $53 15 15 473 11 11 %69 19 T

434 14 is 454 00 0 474 99 FET it4 17 B*

435 &5 455 42 s5TO 475 &3 POl

not zero in register Ro; and recalls its rank in Rg to
store it at STO 20.

At statements 182 thru 192, all the terms of the poly-
nomial, starting with the first, are divided by the first
coefficient which is not zero. This make a, positive and
equal to 1. This operation must be kept in mind to cor-
rectly interpret the change from one polynomial to the
next when reading the results.

Location of the first negative coefficient to determine
its value and rank begins at statement 196 and uses two
loops, statements 203 thru 205 and 207 thru 219. Finally,
if the negative coefficient exists, its absolute value is
stored in register Ro; and its rank in register Ry;, and then
its relative position with respect to the first coefficient
which is not zero is stored in register R,,. Incidentally, the
register number of a coefficient (Ro;) can be determined
easily by adding 9 to its ordinal number (Rqo).

The calculation of the negative coefficient which has
the highest absolute value starts at statement 233 and uses
the T register with a relatively sophisticated process. This
employs four loops, 251 thru 242, 245 thru 267, 271 thru
249 and 279 thru 249. The evaluation of R in Lagrange's
formula takes place at statements 255 thru 265.

On the whole, the STO program can be considered to
end with the RTN instruction of statement 218 with a
long conditional branch with multiple options which
operates as a subroutine and ends at the RTN of state-
ment 266.

Maximum error:

This factor is introduced by LBL D (statement 283)
which is none other than the assignment of the error e in
Ro; in accordance with the assignment of PGM 08 D in
the library. From experience it can be seen that repetition
of the error coefficient for each calculation sequence con-
stitutes a constraint, and that setting it at 0.01 in the
absence of error entry, as provided by PGM 08, does not
really spare the user from this preoccupation.

The fact is that although the precision required varies
from one operator to the next, everyone generally uses a
rather constant factor for a series of calculations.

It is thus practical to keep ¢ in the program, even if this
means modifying it to the programming mode as soon as
the need arises. This is the role of LBL D’ (statement
399) where statements 400 thru 410 can contain € up to
1 X 107*°unless less precision is preferred. It is then suffi-
cient to fill the empty spaces with NOP instructions or
simply with zeros after the first significant figure. Since
LBL D’ calls D at statement 411 but is itself called by Cat
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statement 129, it is clear that key C finally controls recall,
printout and then entry of the maximum error € program-
med by the operator.

Calculation of roots:

The heart of this calculation is PGM 08 E from the
library which we call at statements 292 and 309. Deter-
mination of the successive roots is implemented by our
LBL E (statement 291). From the second root, the lower
boundary a takes the value of the preceding root aug-
mented by a minimum quantity equal to ¢ X 10. This
augmentation is an artifice designed to move the calcu-
lator off the solution it has just found.

The process continues up to unsuccessful exploration
of the last interval. At printout this initiates the
characteristic series of 9.999...7 provided by the manu-
facturer's PGM 08. LBL E itself is controlled by LBL
C at statement 130. This is why key C in fact initiates
determination of the roots at the right time.

Tables of values of ¢ and P(x):

These two tables are successively printed out by LBL
C* (statement 323) which samples thirty-nine suitable
stored values of x from registers R;, thru Rs, and replaces
them immediately in the same registers with the thirty-
nine corresponding values of P(x). The median of x may
be very close to zero. This means that the median of P(x)
corresponds to the value of the polynomial for x = 0
when P(x) = P(—x).

The sequence C’ starts with restoration of the lower
boundary a in R, and stores a new increment in R taken
from forty statements between a and b. An automatic
listing of the memories with loop and error-indicator con-
trol provides indexing of the values.

Sequence C" is itself controlled by LBL E at statement
320 after FLAG 07 has used the error signal from the end
of root determination. Given that LBL E is subordinate to
LBL C, as was stated earlier, sequence C ’ is finally imple-
mented by key C also. Given the partition used, the
thirty-nine sample values of x and then of P(x) occupy
statements 480 thru 959. Those of P(x) can be recorded
on a magnetic card in groups 3 and 4 for automatic print-
out by points of the function curve, The polynomials
derived from P(x) could obviously be recorded in the
sdime manner.

Calculation of derived polynomials:

The derivation of each polynomial term of the general
expression ax” gives a term of the expression anx” . The
calculation is performed by LBL B’ (statement 414)
which, by depressing key B’ once, prints out all the
coefficients from x* to x°. The sequence has been designed
to provide P ’(x) from P(x), P"(x) from P "(x) and so forth
as long as the polynomial remains differentiable. Since
the program then divides the polynomial by its first
nonzero coefficient, it will come as no surprise to find a
derivative divided by this term. This in no way changes
the final results.

As soon as key B’ has played its role, it is sufficient to
depress key C for the derived polynomial to be handled
in accordance with the same complete cycle as described
for the initial polynomial. No other intervention is
necessary, unless it is desired to return to the initial



polynomial to evaluate it as a function of the roots found  Listing 2: Listing of the program that will plot the function

for the derived polynomials. This determination is only  €#'%¢
made after all the derived polynomials that are deemed
useful have been used in sequence by the automatic pro- N0 76 LEL 105 06 & 2o @ o
cedure just indicated. o _ ol B L 10r = . 22 0 0
When the coefficients of the initial polynomial have 003 90, 00 108 22 .5 £ 0
been reentered from Ry, to R, as at the beginning, enter 0905 00 O 110 ©F o7 zis ot 01
* i 006 0 O 111 85 + 316 i3 OF
each root on the keyboard, and each time depress A’. 007 00 0 112 43 RCL 27 be o
This evaluates the corresponding P(x). The function e B e = 08 318 76 Lot
curve is then completed by virtue of the geometric gi0 20 ¢ 13 s 2 =1 o &
significance of the derivative by the following coor- 0i2 00 0 117 7% 5T+ 222 32 17
: 013 00 0 118 00 0O 223 48 RCL
dinates: 014 &9 OF 11% &9 OF 224 00 00
015 01 0t 120 20 20 225 7o -
; ) 016 6% OF 121 97 DEZ 226 04 4
® to the root of P‘(x) = O taken as the abscissa cor- gi7 o8 of ’iﬁg g‘g os L . o
responds an ordinate by P(x) which defines a maxi- 019 76 LEL 124 31 &l 229 67 Ea
S i 020 2% LOG 125 92 RTN 230 02 02
mum or minimum of P(x) = 0 0Z1 73 RCs 126 76 LEL 31 0% 02
I o] H
® to the root of P“(x) = 0 taken as the abscissa corres- %2 0000 ek Bk 2 o hen
ponds an ordinate by P(x) which defines a point of 024 43 RCL 122 43 RCL 235, 42 Rl
; i A : 025 20 20 130 07 o7 235 06 06
inflection of P(x) = 0 if there is one oz 3 - 131 85 ¢ 23 A
27 132 43 RCL = :
I]:'é o7 07 122 08 02 258 01
Program of Function Curve gz 2wl A B2 2oy M3z
Principle: 3t 55 x i = ¢ =i Jo ol
. " . [ 2 o & & 5
The curve of the polynomial is automatically plotted as 033 95 = 138 43 RCL 243 36 PG
h in th in listing 2. | ? 034 72 ST# 139 03 03 243 22 TNV
shown in the program in listing 2. It was necessary to 0is 00 00 130 5 = 245 &7 EQ
conceive an algorithm that compensates for the relative pas o I (21 2281 el
weakness of the TI-59 in this area, since it accepts only e las 06 & e ok P
twenty whole positive values on a 2.5 inch tape. glui 7 G 145 05 0% §56 lg e
- i i . 41 B = , f
With the exception of special cases, the spacing of the 0z 21zl ii‘;’ Eg SE? Egé 0 a0
: ; : : et : SER: 48 01 2
plotted points is mamfest?y insufficient. It can be seen ey AT o 22w 354 € Op
that to cover an 8.5 by 14 inch sheet of paper (a standard g4F e Rl 39 0 2 in oL
European A4 sheet, 21 by 29.7 cm), six strips of machine 047 11 R 152 4z STO 257 69 OF
048 07 7 {53 00 00 258 02 02
045 42 570 154 0% 3 256 1% p*
050 00 00 155 09 260 €9 OF
051 92 RTH 156 42 sT0 5é1 0% o
oSz 76 LeL 157 09 0% 262 19 D
052 12 @ 158 43 RCL 263 65 OF
054 50 1xt 159 06 06 264 04 04
05§ 72 ST# 160 65 x 5 65 OF
056 DO 00 161 4% RCL 266 05 05
057 55 - 162 01 o1 267 92 RTH
058 01 1 163 95 = 268 76 LEL
055 W 0 164 42 ST0 269 13 D
= 165 20 20 270 04 4
el T4 =Hs# 166, &9 OF 271 00 ©
062 00 00 167 21 2t 272 04 4
3 £9 OF 168 43 RCL Zra 00 o
064 Z0 20 163 GE 06 274 04 4
0ES 92 RTH 170 &5 x 275 W 0
0éé 76 LEL 171 43 RCL 27e 04 4
e 13 C 172 01 01 g7 0D 0O
053 14 T 173 4% FRT 78 M4 4
063 1S E 174 8 Apy 279 ® 0
070 32 RTH 175 98 RAhY 280 92 RTH
071 7é LEL 176 98 RDV
072 177 95 =
073 03 3 176 32 X7
=R el
i FoR
076 03 0% 181 71 SER 026 28 Loc
077 02 2 182 75 - g 75 -
07% o1 1 153 &3 OP 047 11 A
075 42 370 183 0 20 053 12 B
050 00 00 185 &7 052 087 13 €
081 83 ( 186 09 09 07z 14 1
022 7: RCs 167 o1 01 127 15 E
053 00 00 188 7% 74 201 99 PRT
024 S5 & 189 98 ADY 220 95 =
0%5 42 RCL 190 3B ALY 4% 36 PGM
G2 oz 03 191 10 E* 50 10 E*
CUEI.' 85 + 192 93 ADV 269 {9 D'
058 4% RCL 193 & ADY
089 07 07 183 93 mDy
090 55 - 195 &7 b8z
b3z oo 05 15 860
= z a7
083 S4 ) 198 49 49
O% S x 199 92 RTN
085 53 o Z00 Ve LEL
0%6 53 201 99 PRT
097 43 RCL in: &9 OF
038 03 03 i0: 00 0o
09a e85 ¥ 204 07 7
100 01 1 205 05 S
101 09 9 206 00 0
102 w2, 207 0 0
102 08 8 Zng Q) 0
104 5 x 209 00 0
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paper must be juxtaposed. In practice, this means making
the data positive, preparing a suitable format and then
dividing it into six parts. Thus, the calculator can sequen-
tially print the asterisks corresponding to the thirty-nine
values of registers R;; thru Rse. This can be accomplished
in six runs.

Since asterisks will be printed for only thirty-nine
pieces of data on 39 by 6 runs, a printout arrangement by
points on the base line is used to mark the nonoperation.
The interval between points is equal to the increment of
the table of the values of x.

Location in the plane is completed by two other
arrangements:

® a sign in the shape of a triangle, in place of a point,
marks the middle of the base line when there is no
value on the zero abscissa

@ the ordinates are marked laterally by a column of
points with twenty per tape

Initialization and data entry:

These operations are performed by LBL A (statement
047) and LBL B (statement 053). The lower data item
entered first is stored in register Ry;, and the upper data
item, entered second, is stored in register Rys. The choice
of these values determines the amplitude of the graphic
reproduction. If it is desired to cover a maximum field, it
is necessary to determine the extremes of the values to be
reproduced by concurrently consulting the table of the
values of P(x) and the group of values of P(x) for x taken
from the roots of P '(x) = 0.

Note that LBL B continues (statement 057) with the ad-

dition of the tenth of each value entered. This auto-
matically provides a margin for the sheet.

Service labels:

Since there is no point in spreading signs on a page
without identification, a certain number of sequences
permit projections along the abscissa and ordinates. LBL
ADV (statement 001) prints one point on the base line of
the strip when no data appears on the corresponding
abscissa. You will recognize the alphanumeric code con-
trolled by instructions OP 00, OP 01 and OP 05.

Instead of a point, LBL PRT (statement 201) prints a
small triangle in the middle of the base line. This distinc-
tive sign marks the zero abscissa when no data item cor-
responds to it. This median is recognized by monitoring
register Ry, in passing and, by subtracting its ordinal
number, it checks for the zero condition using the T
register (= t or # t). The conditional transfer is executed
by means of the LBL = instruction at statement 220 and
LBL PGM at statement 243 (the first being called as a
subroutine at statement 043 by the LBL — instruction and
the second at statement 232 by the LBL =instruction).
Naturally, the T register is restored to its previous value
immediately after statement 234 and before returning to
the main program to serve in the test of the upper limit
for the following data item.

Incidentally, it can be observed here that the user is
dealing with a structure with four levels of subroutines
(main program — SBR — — SBR = — SBR PGM — SBR
PRT). The calculator can handle them with no difficulty,
since it can accept up to six successive calls. The ordinate
location is provided by LBL E’ (statement 250), called at
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statement 181, which prints a column of points at the end
of the tape. For reasons of economy, the alphanumeric
characters are grouped in LBL D’ at statement 269 and
recalled as a subroutine whenever needed.

Data printout:

LBL LOG (statement 020) prints an asterisk when the
value of R*;, recalled by indirect addressing is between
the lower and upper limits of the tape considered. Print-
out uses a special instruction OP 07. Conditional transfer
is provided by LBL — which transfers execution to LBL
LOG if the data item is acceptable after subtracting the
value of the lower limit stored in register R,,. Finally, the
data item processed is excluded from the printing field by
addition of the group of seven instructions of the tape
format contained in register R, (statements 029 thru
035).

Data conversion:

This operation is executed by LBL D (statement 072). It
assigns the thirty-nine data items collected by recording
in groups 3 and 4 of registers R, thru Ry, on completion
of calculation of the initial P(x) polynomial. However,
this could just as well be a polynomial derived for
another calculation purpose. The positive value and for-
matting of this data for printout are obtained with a bet-
ter spread by dividing them by the increment of the table
of values of x contained in register R,;. Each converted
data item replaces the previous data item term for term in
the same register R;, thru Rs..

Tape printout:

Printout of the six tapes is controlled by LBL E (state-
ment 127). This sequence begins with calculation of the
tape format stored in register Ry.. Tape indexing depends
on register Ry, initially loaded with zero at statement
146, then incremented at statement 166 and printed at
statement 173. The lower tape limit is calculated at state-
ment 165 (STO 20) and the upper limit at statement 177
for loading in the T register.

Transfer to the test of the upper tape limit is executed
by instruction SBR — at statement 181. The mechanism
of LBL E uses a double loop:

® 149 thru 198 for register Ry, for data counting load-
ed at 39

® 179 thru 185 for register Rys for tape counting load-
ed at 6

The entire system is actuated by simply depressing key
C, since LBL C at statement 067 monitors D and E. Part 2
of this article will discuss the numerical applications of
this program. Samples will be provided to illustrate the
initialization and plotting procedures to be followed to
output the function curve.m

Glossary

Lagrange’s method: Several theorems exist that can
solve for the real root(s) of a polynomial equation by
means of successive approximations. Lagrange's
method obtains the real root using only integer
calculations, thereby eliminating any roundoff error.
This process is therefore very useful for separation of
roots located in a small interval.

December 1979 € BYTE Publications Inc

133



