%% % Lo e o L oo an g Lo ol

» * ** t »
.y et e E E; S D Sy

* +*
Lo 2 23 t**** L a2 2 I %% *% 4

Volume 1 Number 2 48 /48 July 1976

Newsletter of the SR-52 Users Cludb
published at
9459 Taylorsville Road
Dayton, OH 45424

THE SR-52 AS AN ADVANCED PROGRAMMING TEACHING TOOL

Members who have taken (or teach) high school or college courses in
in computer programming have experienced the frustration of having to
share one computer with many users. Long turn-around times are all too
common, and tend to discourage programmers from trying refinements past
gross executability. Many of the "classical" programming problems can be
mechanized on the SR-52, and its dedication to one user helps to motivate
him to produce optimum software. Following are some of the advanced
programming techniques that come to mind that can be programmed on the
SR-52: Binary search; linked lists; manipulation of subscripted variables
and arrays; interrupt processing; dynamic code modification; op code
translation, link editing, loading, execution; overlays, paging; output
graphics (via the PC-100 printer). I expect to discuss some of these in
future issues, and invite members to contribute in these topical areas
and to suggest additional ones.

JUMPING TO THE WRONG CONCLUSION

As with any detective work that is more than trivial, it is easy to
misinterpret machine behavior under uninvestigated conditions. One
gituation that has frustrated me, and at least one other member is to find
that a register which is cupposed to contain a non-zero number displays &s
0. or -0, The problem is that for a display format current at #fix 0, a
non-integer shows up as 0, or -0. In another situation, a member was
experimenting with Reg 60 "wipe-out" conditions, and concluded that a
certain 8-step sequence would only "work" when it was contained in a
single program register called by the sequence, Ag it turns out, the
critical condition was that the first instruction was op code 43, which
*transfers"” as 42, and it is the 2 in position "B" that causes the "wipe-
out" (see part II of Register Behavior below).

REGISTER BEHAVIOR FROM A SOFTWARE VIEWPOINT (PART II)

As many members may have discovered, the reason e-e produces a
residual and pi-pi does not is that the 13th place of e is 9, and the
13th place of pi is 0 (roundup from the 14th place). Loss -of the 13th
place during display (or arithmetic unit) arithmetic is due to the Reg 60
modification of an operand when it is "attached" to an operator. In the
Part I example where the "program": B, tan, *rtn, %*5', ®*ifzro, B, tan,
#*rtn was stored in Reg 70, its modification by Reg 60 following the
sequencet RCL 70, - STO, RCL 60, STO 70, produced: AB=34, CD=41, EP=56
GH=78, 1J=90, K1=12, MN=34, OP=56. Note that the original exponent digits:
41 (from D and A) were "dropped down" to positions CD. The 34 at

The SR-52 Users Club is & non-profit loosely organized group of SR-52 owners/users
who wish to get more out of their machines by exchunging ideas. Activity centers

on a monthly newalettar, 52+-NOTES edited end oublished by Richard ¢ Vanderburgh

in Dayton, Ohio. The SR-52 Users Club is neither sponsored nor officially sanctioned
by Texas Instruments, Incorporated. Membership 1s open to any interested person,
and a contribution of $6.00 brings the sender six issues of 52-NOTBS.

positions AB combines the attached "-" operator with mantissa/exponent - -
sign information. The remaining digits are unchanged. The important . \
change is the C digit (13th mentissa digit) which got "clobbered" by \
the MSD of the exponent. Apparently, register arithmetic doesn't work :
this way, and the 13th place is preserved. Incidently, this discussioncam- ‘!
cerning Reg 60 applies to Reg 61-69 as well, when numbers attached to - ‘
operators have been pushed into them by a succession‘of parentheses.
There are additional peculiarities of Reg 60 behavior associated with
its role in producing fractured digits and "wipe-out" which are probably -
due to "invisible" bit patterns. These are the bit combinations in a one-
digit 4-bvit byte that cannot be set by any of the ten digits. If the ten -
digits produce the bit patterns: 0000, 0001, 0010, 0Cl.1. 0100, 0101, .
n110, 0111, 1000, 1001, then there are six additional bit patterns: 1010,
i0i1, 1100, 1101, 1110, and 1111 which cannot “be user-created, which
would look like one of the first ten, but which the machine could and
probably does recognize in different ways. -

A similar bit-pattern effect probably accounts for the fact that
not all program code is "transferable". To sce what this means, in LRN
mode key the following sequence into locations 000-007: #LBL A, 1, 2, 3,
l, 5, 6. 1In run mode key: RCL 70, STO 70, and see that locations 000-
0C7 have been changed to: *rtn, 1, A, #*i/x, *rtx, %x<¢, #*stflg, *ifflg.
Now re-write 000-007 as:s #*LBL A, 1, 2, 3, 4, 5, *¥rtn and you will ses
that RCL 70 STO 70 doesn't change anything. The first sequence is not
transferable; the second is. In this example, it is the number 6 at the
8th step of the first version that causes the transfer problem. The .
general rule is that the 8th step of any program block of 8 steps cannot
be a numeral if proper transfer is to occur. What happens is that the
display ignores the leading zero of a coded numeral in the MSD of the
mantissa, and shifts the other digits one place to the left. Now put:
&, 1, 2, 3, 4, 5, 6, *rtn in locations 000-907, then RCL 70, STO 70. -
This time the first step A got changed tc #E'., This is because position
B (the LSD of step 000) which carries mantissz and exponent sign
information transfers only as 0, 2, !, or 6. Ore more complication to
keep in mind is that the 0, 2, 4, 6 bocome 1, 3, 5, 7 if during transfer
there exists an error condition produced by a 0 divide 0 or xrty where
x=y=0, Apparently, the effect of these two error conditions is to make
the ISB of the B position 4-bit byte a one. Thus the 000, 0010, 0100,
arnd 0110 patterns that normally determine mantissa znd exponent sign
information become 0001, 0011, 010i, and 0ili. ,

Charles Davis points out that if a number whose mantissa is negative
is put into the display (i.e. position B is 2 cr 6) the sequence: +,
STO 60, = will produce a total "wipe-out" (th> effect is to turn the
mechine off, then on again). However, if the machine is first put into
the 0 divide 0 error condition, wipe-out does rot occur if the negative
number is put into the display by being recalled from a register. The
conclusion I reach is that position B must be either 0010 or 0110, which
have in common the bit pattern XX10. Incidently, the above +, STO 60, =
sequence can be generalized to: A, B 60, =, where A is any of the four
arithmetic operators and B is one of: STO, SUM, *PROD, INV SUM, INV
“*FROD, or #EXC. Further discussion of register behavior will await
“member responsec. :

. WHERE TO BUY MACHINES

While price may be the main consideration, two other criteria should
be kept in mind: 1¥ Delivery time, and 2) service policy. Items that
are stocked pose no -delivery problem, but it is often difficult to get ‘
realistic forecasts on ordered items. From the user's standpoint, the
best service policy guarantees him a working machine at all times via a
no-cost trade, or loan-while-repair. :

52=-NOTES ViN2p2

HP-65 PROGRAM CONVERSION TO SR-52ese

I'm getting a growing number of inquiries concerning how best to
convert HP-65 programs to SE-52 implementation. Unfortunately, there is
no magic formula to apply, but I can offer a few guidelines, and welcome
additional tips from other members. In general, the more the RPN stack
is used (filled and manipulated) the tougher the translation becomes.
And, ofcourse, it is one thing just to get a program to run, and quite
another to optimize it. The unannounced features of both machines can
further complicate things to the extent that even an experienced pro-
grammer who is unfamiliar with either machine is apt to run into serious
difficulty. Even though I've done a fair amount of HP-65 programming,
when I translate other than trivial routines, I first convert the HP-65
program to flow-chart or structured English form, and then work back
down through SR-52ese. When there is a lot of stack action, I write
down stack contents at each step in order to keep track of changing
parameters. It is helpful to keep in mind some basic differences
between the RPN stack and pending arithmetic registers: 1) The stack
quantities are order-maneuverable, 2) they are not "attached" to oper-
ators, 3) as the stack is lowered by 2-number operations, the top-most
number is copied downward, and 4) a RCL usually lifts the stack (the
top-most number is lost).

An automatic translator that would convert any sequence of HP-65
code to SR-52 code would require considerable programming effort, a
large machine to run the translator, and the resulting translation would
probably be unacceptably inefficient for practical use. But it might
be fun to try!

ROUTINES
Flag Tester: Bob Dirkman has concocted a space-saving flag-testing
routine that is a practical example of dynamic code modification:

000 #LBL A 002 RCL 99 005 STO 71 008 *LBL #*2°
010 1 011 *ifflg O #1' 014 O 015 #*LBL *i°
017 HIT 018 1 EE 91 022 +/- 023 INV SUM 71

027 GTO #2¢ In run mode, initialize with: RCL 71 STO 99. Then key A
to see the condition of Flaﬁ 0, RUN tests Flag 1, next RUN tests Flag 2,
RUNs Flag 3, and RUN:s Flag 4. O displayed indicates flag is off; 1 that
it is set. The effect of steps 018-023 is to increment the digit at
step0l2 (which starts out as 0). If the routine is to be recorded, a
few run-time steps may be saved by changing step 002 to BCL 74, and then
prior to recording, in run mode keys RCL 71, STO 74 (which needs only to
be done once).

D-R Switch_Sensing (con): Claude Coleman suggests the sequence 90,
tan as a test for undesired degree mode, and 0, INV cos, tan for undesired
radian mode, both of which create error conditions to signal that the
switch is in the undesired position. At first glance, one might wonder
why the second sequence wouldn't produce an error condition in radian as
well as in degree mode. The reason is that in degree modes 0, INV cos
produces 89.99999999987, while in radian mode it produces pi/2 to 13
Places. These two <routines save space over ones that test for zero and
branch accordingly, but should not be used in programs that process
D-R Switch-sensitive data prior to a HIT or *rtn that signals the error.
Popular Computing's July issue devotes a couple of pages to "SR-52
Notes" in which the idea of the D-R Switch being considered as an
interrupt processor is discussed. This has applications in both teaching
and as a proctical means of monitoring the "pro ss” of lengthy itera-
tions. As many have discovered, keying HLT during program execution,
followed by RUN does not always produce intended execution. The sequence:?

52-NOTES ViN2p3

L EE—

#pi, sin, *ifzro, *pi inserted at an interruptable point in a loop, with:
#1BL #pi, HIT outside the loop provides for uninterrupted loop execu-
tion when in degree mode, and a safe interrupt when in radian mode.

FORUM

: Member comments, opinions, suggestions, gripes, etc. not covered
elsewhere are aired in this space. .
Dix Fulton laments the low quality of TI's software support for the
SR-52... a complaint shared by many pocket programmables owners/users
against the manufacturers. I suspect that it is just a matter of basic
economics: the cost of high quality software would drive prices higher -
than manufacturers think users/owners would be willing to pay. When it
is a labor of love, the long hours devoted to ultimate optimization are
spent willingly, but when expensive software expertise has to be paid
for, it is not likely to be cost effective, especially for the obsolete-~
prone pocket-programmables. But users organizations can and should £ill
the gap between mediocre commercial software, and what the owner/user
wants/needs.

Dix notes that three of the four possible fractured digit config-
urations (see ViNip3) can be thought of as degrees, minutes and seconds
symbols. Charles Davis has devised a way to combine the degree and
minute symbols with calculated values, and thus opens up a promising
new feature:s variations in display formatting. (More on this later) -
Has anyone been able to create fractured digits completely under program
control, i. ®. without a manually keyed = %or SST'd =)?

Dix claims to have a "conservative" U4X4 Determinant program that
uses only Reg 00-19, executes in 8 seconds, and "never fails to solve".
If Dix would like to share it, I'll publish it.

: Rather than publish lists of programs members have written, I will
put in this space specific requests for help. State the problem you
are trying to solve, and the programming aspect(s) giving you trouble:
algorithms, keystroke mechanization, I/0 handling, etc. Other willing
and able members are invited to respond.

Edward Haas has been exploring the behavior of pseudo instructions,
and notes some results different from what I have observed. Perhaps
there is individual machine dependence, or maybe a state-of-battery-
charge dependence involved. Other members are invited to share their
experience with gseudos (codes: 21, 26, 31, 61, 66, 71, 76, 62, 63, 64,
72, 73, 74, 82, 83, 84, and 92; defined as code that is unkeyable in LRN
mode). - I'1l summarize results in a future issue. Pseudos are creatable
as data:s 8.4 STO 70 puts code 84 at step 007.

_ Cleon Dean notes that SR-52 RF can be picked up by a small AM radio,
especially when the display is flashing.

Val Barron has been experimenting with "long" mag cards, and has
found that the 104" card made by HP (part #9162-0045) for its desk-top
model 10 machine can be trimmed to become three continuous SR-52 cards.
Once he got write-protect black tabs in correct places, Val reports
success at executing successive reads wunder program control. Claude
Coleman reports being able to scotch-tape as many as four regular cards
in series, and have them all read and executed, He says the trick is to
line up (overlap) the end vertical lines (printed on each ecard) before
taping. .Anyone trying this should be aware of the risk of read/write
unit fouling by the tape and/or overlapping.

INT/FRAC TRUNCATION (con)

The "C" routine cited in ViNip3 is subject to the condition that.at .
the time it is invoked, the display format must be at least "one" (*#fix 1 '
Richard Bazan brought this to my attention when he found that the routine
always worked the first time, but not always after that. The problem is
caused by the #fix 0 in the routine itself.

52-NOTES Vi1N2pk

DISPLAY FORMAT VARIATIONS
In devising a way to get degrees and minutes symbols into the display
"in desired places relative to calculated values, Charles Davis applied a
useful sequence of the form: RCL 01, + St0 60, RCL 02 =. I have expanded
. its application to produce a wide range of display format options which:
~ may be used to enhance a variety of outputs: numerical calculations,
game scores, upside-down messages, etc. .
~ It appears that the "+" in this sequence sets some invisible bit
patterns in Reg 60 (or somewhere?!) which are not altered by the sub-
sequent STO 60. Reg 01 acts as an "operator" on Reg 02 in the sense
that digit by digit, Reg 01 "lets pass” Reg 02 digits or produces frac-
tured digits in their place. If Reg 01 digits are labeled AB, CD, «.4
OP (see ViNip5) and Reg 02 digits labeled A'B*, C'D', ... O'P', then
the following digits are "pairéc™ in the sense that an unprimed digit
“operatés" on a primed ones CD', DA', EE', FPF', GG*, HH', II', JJ°*,
KK', and NN'. The contents of Reg 01 are treated in Reg 60.as operator-
reformatted, i.e. the positions CD are the exponent (see ViIN2pl). Thus
the CD quantities affect the D'A' exponent values in Reg 02. The effect
-of operator digits is as follows: -

Digit:s 0] 1 2 3 L 5 é6 7 8 9
Effect: none none * bdblank °* o = blank none none

If we number display positions from left to right as 0 thru 13, then
. the resulting digits (or fractured digits) fill the display as follows:

- positions 0 and 11 get minus signs or not according to the value of B’
(whi:h is not operated upon) in the usual way (see ViNip5). Position 1
-gets NN', .2 gets KK', 3 gets LL', 4 gets II', 5 gets JJ', 6 gets GG',

7 gets HH', 8 gets EE', 9 gets FF', 10 gets C*' (which is not operated
upon), 12 gets CD' and 13 gets DAf. Note that MOP and M'0'P' appear to
‘ be ignored. However, neither O nor 0' may be 0, as this would make Reg
01 and Reg 02 non-transferable (see ViN2p2), and if M* is zero, for
mantissa operands the fracture rules get changed: as operators, the
digits 0, 1, 2, and 4 act like 3; 5 acts like 6; while 3, 6, 7, 8, and
9 appear to act normally. The same is true of the exponent operands:
A' and D', If A' is zero, position 13 is affected, and if D° is zero,
position 12 is affected (by the change in fracture rules). However, if
C, D, A', D' are all zero, then nothing is displayed at positionsi2 and
13. The minus sign at position 1i can only be made to appear if either
A' or D' is non-zero. The mantissa operands: E!, F*', G*, H', I', J°*,
K*, L*, and N' appear t0 introduce the further complication that any non-
zero operand "normalizes" the fracture rules for itself end all lower-
order mantissa operands. For example, non-zero H' makes E', F', and G'
behave "normally", even if they are zero. '
AB have no apparent effect on Reg 02, except that if B transfers as
2 or 6, there is the "wipe-out" effect (see V2N2p2), and if B transfers
as 4, the intended paired operations do not occur. I have not yet found
a practical use for AB being other than 00. A , '
Putting some of all this to use, let's suppose that a program
produces four 2-digit positive integer outputs:. 12, 34, 56, 78 which
are ‘associated in pairs such that it would be convenient to display the
output ass 12-34 56-78., To accomplish this, prepare Reg 01 with
AB=00,' CD=00, EF=30, GH=93, 1J=69, KI~99, MN=93, OP=99, %One way to do
this is in LRN mode, beginning at step 000, keys 0, O, *rtx, ., ¥97,
' *pap, «, *pap; then in run modes RCL 70, STO 01). For Reg 02: AB=84,
CID|=67' E'F"—‘OS, G'H'=’+0, IIJ!_-:OB' K'L*=12, M'N'=99, O'P'=99, (one
way to get the (84) at step 000 is in run mode to key 1 EE +/- 8 STO 70).
Now, in run mode key: RCL 01, + STO 60, RCL 02 =, and you should see:
12-34 56-78. 1In this example, "3's" were positioned in Reg 01 to cause

52-NOTES ViN2p5

desired blanks. The "-" between the 12-34 was created with the 6 at

position I in Reg 01, while the "-" between 56-78 is "naturally there in

the makeup of Reg 02 (position B! is a 4). In preparing other formats,

keep in mind the limitations that display positions 0 and 11 can only be
either blank or the minus sign, and -that position 10 will be the unmodi- .
fied C' digit (since it cannot be fractured). For a practical applica-

tion, it would be necessary to "build" Reg 02 from computed values, under
program control. Since it is the contents of Reg 02 that the user sees
displayed before he manually keys =, the three high-order mantissa digits

may be chosen along with an appropriate #fix to serve as a cue.

56-NOTES

Material is starting to come in from SR-56 owners/users. Since I
don't have access to the SR-56 myself, I will publish items sent in,
usually without comment. As with the SR-52 material, priority will be
given to short routines and discoveries that introduce clever ideas.
‘Keystroke sequences should include step numbers.

Pause Key: D W Johnston notes that the pause function can be used
to watch the progress of a well-exercised loop, since a critical (presum-
ablychanging) quantity can be briefly displayed at the end of each cycle
with the pause instruction.

Zero_Divide Zerot D W also notes that similar to the SR-52 case,
the sequence: 0, divide, 0, =, CE produces an error condition that
causes SUM to execute as INV SUM, (but PROD doesn't execute as INV PROD).

BAGELS ONE TO TEN ANOMALY (see program in ViNipé6)
Larry Mayhew points out that if a ten digit number is being scanned
by a guess that has all the digits in wrong places, the score is 1.0
(instead of 0.10)., This occurs because ten .1's add up to 1.0, and
could be remedied by reformatting the score to reads FF.pp. ‘

NOTATIONS/CONVENTIONS

Notations, abbreviations, acronyms, etc that may not be generally
recognized will be explained in English. Let me know what you find
puzzling, and I will explain in the next issue of 52-NOTES. A few
abbreviations that have cropped up so far are:s GT=greater than, IT=
less than, GE=greater than or equal to, IE=less than or egual to, *rtx=
8 ugge root of x, xrty=xth root of y, *pi=3.14..., €=2.718..., div=

vide.

MEMBERSHIP : 4

Several members have contributed more than the suggested $6.00
for six issues, and I am grateful. Copying, stamps, phone tolls, etc.
do add up. At this writing (10 July ?76) there are 171 members, with
the number frowing every day. I plan to include a membership list in
the August issue that goes to members, and remind those who wish to
have their names removed to so inform me by the end of July.

MACHINE DIFFERENCES

FPred Gruenberger and Cy Pizette both bought their SR-52s about 3
months ago, and both report lack of access to Reg 60-69. So far, TI's
official position is that all SR-52s have been manufactured to the same -
specifications. If others are experiencing this (or any other unannounced
feature) deficiency, identify the problem, and your machine's serial
number, and I will try to persuade TI to at least recognize that they
have introduced hardware differences. '

HP-67
' . The successor to the HP-65 looks like a close competitor for the
SR-52, My first impression is that it is superior as a statistical tool,
but that the restrictions on flag, register, and indirect addressing
manipulations leave the SR-52 in the lead for programming versatility.
'~ 52-NOTES ViN2p6 (end)

