LA &40 % %3

g&*** * ** g** g iimg ’.i** i #* "

%54 :

3% 3¢ ** % ** 4 4 403t
g *

¥* 4
%3¢ %35 t**** * 9% 9% % % : 5**** 4 ****t
. Volume 1 Number 3 L8 /L8 August 1976

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

PC-100 PRINTER TECHNIQUES

The field is wide open to clever use of known as well as unknown .
features combining the SR-52 or SR-56 with the PC-100 printer. For
instance, small routines could be written specifically to be run in the
trace mode in order to produce alpha as well as numeric cues, or to be
listed to show 11th, 12th, and 13th mantissa places. Send in your clever
ideas that you wish to share.

Over the years, programmers have taken advantage of the way large
computers and their line-printers have been designed to get pictures and
graphs generated and printed under program control. The primary limita-
tion is that a resolution cell cannot be made smaller than the space
occupied by a character. However, line-printer pages are sufficiently
large to cover more resolution cells than would generally be needed. While
the PC-100 printer can be used this way under SR-52/56 control, the short
line-length and limited number of characters present a considerable
challenge to the programmer. Look for the program: Printer Graphics
(found elsewhere in this issue) which is based on a routine developed by

.Tony Barlow and Carlisle Phillips, and which shows how the user can get
the printer to plot y as a function of x, given xo, delta ¥, and the number
of points desired. This program has been left in relocatable form, as most

1

users will want to re-format output to suit themselves. -

POINTER RULES A .

To a programmer, a pointer is a register (or other computer device
that "holds" a number) in which numbers are stored that are intended to be
the addresses of other registers or program steps. Logically, a pointer
should only contain positive integers in an "addressable" range. However,
the SR-52 can, in some cases, handle a larger set of reals which are
“recognized” as proper addresses. , :

For register pointers, the SR-52 acts only on the tens and units
Places of a pointer number, and treats any negative number as zero. Thus
a large number can be put into a pointer, and used to point to as many as
13 different registers. For example, in run mode, key: 9.876190899,

EE 12, STO 01, 180, SUM 01. Reg 01 now points to Reg 00 (put something in
Reg 00 and *IND RCL 01 to verify this). Now divide Reg 01 by 10 and you
will find that it points to Reg 18; another division by 10 and it points

to 91, then to 99, 89, 08, 90, 19, 61, 76, 87, 98, and 9. Further divisions
by 10 will make Reg 01 point to Reg 00 each time.

For program step (address) pointers, the entire integer portion of a
rositive real is acted upon. If this exceeds 223, an error condition is
created. Negative numbers_are_treated_as zero. '

. The SR-52 Users Club is & non-profit loosely orgenized group of SR-52 owners/users
who-wish to get more eut of their machines by exchenging ideas. Activity centers
on a monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh
in Dayton, Ohio. The SR-52 Users Club is neither sponsored nor officially sanctioned
by Texas Instruments, Incorperated. Membership is epen t» any interested person,
and a contribution of $6.00 brings the sender six issues ef 52-NOTES.

SB-52 Program: Printer Graphics Barlow, Phillips, Ed
User Instructions

Step Procedure Units Press Display .
1 Enter Program card 2nd read twice

2 GTO E
Z In LRN mode, key f(x) followed by *rtn (assume x in the display)
In run and trace modes, key a nominal x value, then E. See printed
the verified f(x) and its value. Get out of trace mode.

5. Key xo A
6. Key delta x RUN
7. Key number of desired points RUN

See max f(x), min f(x) and the plot printed in that order.

Notes Reg 0O, 01, 02, 03, 17, 18, 19, 98, and 99 are used by the plotting
program, and should not be used by the function at Label E.

Program Listing

000 #*LBL A 002 STO 19 005 STO 18 0GE HLT

009 STO 17 HLT 013 STO 01 016 -1 = 019 STO 00

022 RCL 18 025 E , 026 STO 02 020 STC 03

ogz RCL 17 025 SUM 18 ozg #LBL #1° olZ RCL i8

0 E X o0bks (sTO - 0 RCL 02) 052 #ifpos #*2°
osh 1 = 056 STO 02 059 #LBL #3! 061 RCL 17

064 SUM 18 CLR 068 #dsz *1° 070 RCL 03 073 #fix 2 #prt
076 - RCL 02 080 #prt = 082 *1/x X ¢3Lk jo =

087 STO 98 090 +/- X 092 RCL 02 = €96 STO 99

099 RCL 01 102 STO 00 105 #LBL #4¢ - 107 BCL 19

i20 E X 112 BCL 98 115 + RCL 99 i19 = *fix 0 ‘
122 EE INV EE 125 INV *log 127 div 9 = 130 EL INV EE
123 X8 +9 137 #1/x = 123 INV #fix 1L #prt

142 RCL 17 1 2 SUM 19 1 *dsz *4v 150 CLR #=tn
152 #LBL #2' 154 1 = 157 (STO - 160 RCL 03)

164 INV #ifpos 166 *#3' 1 = 169 STO 03 172 GTO #3°¢

i74 #LBL E :

LETTER GAME CONVENTIONS

While straight number games pose no symbol convention problems, those
involving letters do. I suggest that SR-52 letter games (Hangman, word-
Bagels, etc) follow the "Rausch Overlay" convention: Each digit key
represents 3 letters, with the user defined function keys: B, T, and D
acting as left, center, right "shift" keys that specify whicn of 3 letters
is intended. ‘' Thus, the 7 key represents A, B, and C; E~DEF, 9=GHI, U4=JKIL,
5=MNO, 6=PQR, 1=STU, 2=VWX, and 3=YZblank. For example, the Xeyed
sequence: 7,B produces a number in the machine that reprecents the letter
Ay 5,C produces N; 1,D produces U, etc. If routines B, C, and D are
written consecutively ass #%*LBL D, +9, #LBL C, ** 8 =, *ISL R ,.. then
the alphabet translation becomes: A=7, B=16, C=25, D=8, L=7, =26, G=9,
H=18' I=2?' J=l+' K=13' Il=22' #5. N=1u. °=23' P=6' Q=15. R-'-Zl"! S=1’ T=10’
U?19) v=2. *11. x=200 Y=3) z=12’ blank=210 If. for a par'ticular applica-
tion, letters are to be input in succession, then function B written ass
*LBL B, #EXC 05, #EXC Ok, *EXC 03, #EXC 02, STO 01, HILT would put the
first "letter" in Reg 01, the second in Reg 02... the fifth in Reg 05. ‘
If the HLT is replaced by *rset, and the first two progran steps are:
000 CLR, 001 HLT, followed by whatever processing is to be done, then a
RUN kiyed after the last letter is input will initiate main progzam
execution.,

52-NOTES V1iN3p2

THE NIM GAMES . i
The word NIM (or Nimb) refers to a variety of 2-player contests in

which various rules are applied to a playing field consisting of a pile
(or piles) of chips., The simplest NIM game begins with one pile of
specified size. Players alternate, removing up to a specified maximum
number of chips at each turn until the loser is forced to pick up the
last chip. In a more sophisticated game, there are 3 or more piles of
specified starting sizes (not necessarily the same). Players alternate,
removing as many as desired from many one pile until the winner picks up
the last chip. I invite members to submit programs for a K-pile NIM
game. I will publish the best in a future issue (judged on I/0 ease,
low execution time, and the size of K). In the meantime, here is a lesser-
known NIM type of game which I came across in an exercise in Volume I of
Donald Knuth's "The Art of Computer Programming” which he credits as an
unnamed game to R E Gaskell and M J Whinihan. I have named my SR-52
mechanization of this game: "Dynamic NIM", since the maximum number of
chips a player may remove changes as the game progresses.

SR-52 Program: Dynamic NIM#
User Instructions

STEP PROCEDURE INPUTS PRESS OUTPUTS
1 Enter Program card (2nd read)twice
2 Key Number of chips 2 LT INT 1T 105 A Pile,Max*#
' by
3 Key Player's Move 0 LT INT LE Max¥*%# RUN BET?%R%Q%max i

repeat step 3 until there is a winner |

% Object of game: take last chip (or all remaining after first move).
On first move, player may remove any number, but not all. Machine follows
by removing no more than twice what player removed. Play continues with
both player and machine restricted to no more than twice the previous move.
Intermediate display presents the remaining pile after both player's and
machine's moves, as the integer part. Fractional part shows the max*# !
number of chips player may remove on his next move. Flashed max indicates !
illegal (too large or too small) player's move, in which case the player
may try again after pressing CE. When the machine wins, it displays an
upsidedown happy message. When player wins, machine flashes its concession
of defeat. Non-integer moves (or 6riginal pile) result in non-terminating
program execution. : -

-Program Listi?g

000 *LBL A " 002 STO 01 005 008 STO 04

011 GTO 190 015 HIT 0i6 STO 02 019 1INV *ifpos
021 161 024 #*ifzro 161 028 - RCL O4 022 =

023 +/- ozu INV #ifpos 036 161 RCL 02 042 1INV SUM 01
046 RCL 01 oLh9 #ifzro 169 053 RCL 02 056 X 2 -

059 RCL 01 = - 063 #®ifpos 213 067 RCL 01 070 STO 08

073 0 STO 05 077 1 STO 06 081 RCL 05 + 085 RCL 06 =
089 STO 07 092 #EXC 06 095 STO 05 098 RCL 07

101 - RCL 08 105 = 106 INV ®#ifpos 108 081

111 *ifzro 126 115 RCL 05 118 1INV SUM 08 122 GTO 073

126 RCL 02 129 X 2 - 13ﬁ RCL 08 = 126 INV #ifpos
138 181 141 RCL 08 1 X2= 147 sTO O4

150 RCL 08 153 INV SUM 01 157 GTO 190 161 pseudo 84
162 RCL o4 165 #®#fix O 167 GTO 015 171 pseudo 84
172 3507.1 178 #fix 1 HLT 181 2 STO O4 185 1 INV SUM 01
190 RCL 01 193 #ifzro 213 197 + RCL 04 201 div 1 EE 5 =
206 INV EE 208 *fix 5 210 GTO 015 214 5178.4

220 #fix 2 222 HIT
52-NOTES ViN3p3

DIX FULTON'S 4 X 4 DETERMINANT PROGRAM

Dix's program does indeed appear to do all that was claimed, and is a
good example of efficient programming. It also gets high marks for I/0
ease, and may leave enough memory space for the possible addition of a
Cramer*s Rule solution to a system of four simultaneolis equations, Dix's
condensed listing format is both efficient and readable as applied to this
type of program that consists mostly of a long algebraic string. The -
user must remember where the implied #* symbols belong, to designate the
2nd shift key.: .

SR-52 Programi 4 X 4 Determinant Dix Fulton May 1976
B “User Instructions :

1. Initialize with "E". (Required only for first case)

2. Enter matrix elements in order, each followed by "RUN",

2. Answer appears 8 seconds after last entry.

i : Program Listing

000: LBL A X RCLi6 - RCIi5 X rtn

022+ LBL B X RCL14 - RCL13 X rtn

024s LBL E + 16 ST000 0 =

O034x HLT IND STO000 dsz034

C43s RCI11 A RCIL12) X (RCLO1 X RCLO6 - RCLO2 X RCLO5) +

071 RCLO7 A RCLO8) X (RCLO2 X RCLO9 - RCLO1 X RCL10) +

099: (RCLO3 A RCLO4) X (RCLO5 X RCL10 - RCLO6 X RCL0O9) +

i27: (RCLO9 B RCL10) X (RCLO3 X RCLO8 - RCLO4 X RCLO?7) +

i55¢ (RCLO5 B RCL0O6) X (RCLO4 X RCL11 - RCLO3 X RCL12) +

i83:+ (RCLO1 B RCLO2) X (RCLO? X RCL1i2 - RCLO8 X RCL11 GTO E

AUTOMATIC CARD READ
- Some members are having difficulty getting programmed *reads to work.
The following rules appear to apply, and may be helpfu ls 1) At any given
time (while turned on) the machine is in either of two read states: 1st:
thie next read will transfer data to steps 000-111, and 2nd: the next read
will transfer data to steps 112-223. 2) When executing a *read instruction,
the SR-52 transfers the side being read of a card (either A or B) to
either locations 000-111 or 112-223, depending upon the current read state
of the machine. 3) At turn-on, following a manual or programmed CLR, or
following an even number of reads, the machine is in a 1st read state;
following an odd number of reads (with no intervening CLRs) the machine is
in a 2nd read state (not to be confused with #read), &) Following a
.. programmed read, executijon resumes at the step containing (or that eontained)
the *read instruction Jjust executed. Some of the implications of these
.-xules ares 1) A %*read located at step i in the ypange 000-111 that is
executed when the machine is in a 1st read state will transfer 112 program
steps from the card to locations 000-111, and the machine will resume
. program execution at step i. 2) A *read located as in‘l) above, but with
the machine . in a 2nd read state. will transfer 112 program steps from the
card to locations 112-223, and the machine will re-execuate the *read (still
at step 1). 3) A %*read located at step j within the range 112-223, that is
executed when the machine is in a ist read state will transfer 112 program
steps from the card to locations 000-111, and the machine will re-execute
the *read at step J. 4) A *read located as in 3) above, but with the
machine in a 2nd read state, will transfer 112 program steps from the card
tg 1o§ations 112-223, and the machine will resume program execution at
Bep . . . : ’
Has anyone been successful at getting INV *read to work under program
control? (Every time I've tried it, the drive motor runs away!) :

52-NOTES V1N5pb

ADVANCED PROGRAMMING TECHNIQUES (Part I: ICS)
For the most part, routines presented in this space will not, of
hemselves, have much direct practical application.
demonstrate some of the advanced techniques of software mechanization used

on large machines.

does introduce some advanced concepts.

They will, however,

And some will help to optimize practical SR-52 programs.

An Interpretive Computer Simulator (ICS) is a computer program which
when run on machine A executes code written for machine B, and to the user
makes machine A appear to be machine B, except that execution takes longer.
Although the program: "HP-65 ICS" that follows is a very simple ICS, it

An operational ICS, besides being

able to recognize all possible instructions, needs to scan several at a

time to determine context.

This SR-52 program can only process three con-

cecutive HP-65 instructions (coded as two or four digit positive integers),
such that the first two are recalls from any of the registers 1 through 8,

and the third is an operator.
processing, assembling, and loading.
tion code is to run it by a table of values until it is matched.

But it does demonstrate vectored translation
One way to process an input instruc-

The

position in the table of the matching element then determines what process-

ing is to be done.
time is required.

However, if the table is large, considerable search
Vectored processing is direct, and therefore fastor.

For this exercise, use is made of the fact th:t all but one of the allowable
operator op codes happen to be in an addressable range, i.e. they fall

between 0 and 223.

separated from the next by 10.
branch through Reg 12.

.tho 71 to 65 (the equivalent SR-52ese).
+o step 051 instead of the desired 052.
does no harm.
vhich disables the GTO.
liberty of merging g yX as 3505 (instead of the two steps:
program registers are used in the assembly and loading process.

It is also convenient that each arithmetic operator is

The vectoring is mechanized by an indirect
branc For example, a "71" in HP-65ese represents the
A arithmetic operator, and program step 071 begins a sequence to "convert®

Note that a 51 causes a branch
Fortunately, the #2' at step 051

The out-of-range 3505 ccde produces a handy error condition
In order to simplify processing, I have taken the

35, 05). Threec
Reg 85

holds a permanent "skeleton" sequence which is transferred to Reg 87 for

"fleshing out".

E, RCL,

1,
2.

2

Se

000
008
i9
033
ouy
053
072
085
4 °95
109
119
128

Key second op code:

Reg 86 contains the unchanging first three steps:

Key third op code:

Run function E with appropriate inputs.

8707, A 002
STO 11 011
INV SUM 10 023
#IND GTO 12 037
SUM 87 050
000 061
CIR 6.5 075
GTO #17 087
SUM 87 098
#£ix 0 111
HLT 120
100000 133

_ User Instructions

I(ey first op codet B#OX (x=1g2.0008);
3L"OY (Y= 1Q2po-08 1 Press RUN

61=+, 51=-, 71=X, B8i=div, 3505=yX; press RUN.

When execution stops, examine SR-52 code following Label E to verify
proper translation of HP-65 code.

ress A

Program Listing

INV #fix
HLT

INV SUM
CE 4.5
GTO #2¢
CIR 8.5
GTO #1°
*LBL !-2'
10 yx (
EE =
000
*LBL E

00k
012
027
o041
052
065
077
089
102
113
123
135

11

STO 10
STO 12
RCL 85
#LBL #1°
CIR 7.5
GTO *1°
0000
RCL 11
RCL 10
#PROD 87
RCL 00
RCL

- S > > G PP S €S D W e W o -

52-NOTES ViN3p5

*LBL,

007 HLT

015 34C0

ozo STO 87
043 EE +/- 10
056 GTO *1°
067 0000

081 CIR 5.5
092 EE +/- 5
105 X 10 =

116 1INV EE CLR
126 = #rtn

LACK OF REG 60-69 ACCESS
A reliable source indicates that TI will recognize and repair without

charge an SR-52 under warranty which does not give the user direct access
to Reg 60-69. Return your machine with a statement to the effect that all
the pending operations functions are not working. Specifically, when the
sequence: *pi, STO 60, 0, RCL 60 is keyed, the result is not pi, as it .
should be. (Be sure the step following STO 60 is "zero", not CLR).

SR-52 MATERIAL IN 65-NOTES

Since a number of members have expressed interest in obtaining copies
of 65-NOTES SR-52 material, I have obtained permission from R J Nelson to
reprint 22 pages of interest. I will make this material available to SR-52
Users Club members for $3.00 per set, Self addressed labels or large
envelopes will expedite turnaround.

PC-100 Hardware Tips

A reliable source suggests removal of the 300 ohm 2-watt resistor on
the PC board to reduce the heat buildup. Its only apparent function is to
make the VLED power indicator light extinguish a little faster when power
is turned off.

Variations in both printer operation and paper quality make print
color unpredictable. Users can expect a range from blue to purple to black.
Con't use TI 50-50 paper, as it can cause print-head fouling; paper for
the silent 700 data terminal may be trimmed to fit the PC-100, and will
reportedly produce more consistently black print than the TP-30250 paper
specified for the PC-100. Apply the bond-paper head-cleaning method
described in the owner's manual twice prior to starting a new full roll of
paper.

Notes Members (and other readers) are cautioned that any hardware
modifications, product uses, or procedures not specified in the appropriate
cwner's manuals are performed at the owners/users risk, and may void
existing warranties. Neither TI nor the SR-52 Users Club assumes any
responsibility for the results of such actions.

Incidently, with the SR-52 in LRN mode, the printer's ADV key will
step through program memory, leaving *pap (99) codes in its wakel

TIM DISPLAY

M E Patrick was concerned about the display on his SR-52 becoming dim
when .0000001 is entered from the keyboard. TI informed him that this is
normal (which is to say that this anomaly is common to all or most SR-52s).
A little experimenting shows that it is the 7 places following the decimal
point that cause the dimming. Note that the 1 is not dimmed. If a non-
numeral key is held down, the display brightens. If some of the zeros are
replaced with other numerals, only the leading zeros are dimmed. If an
integer part is present, only the decimal point is dimmed.

INTEGER/FRACTION TRUNCATION

Here's a refinement to the #*LBL B rautine (ViNip3), contributed by
Jared Weinberger: %LBL B, (#fix 0 - ,5), *D.MS, *rtn, The original "STO"
can be eliminated, since the #*fix 0 plays its "dummy" role. J M Prosser
has found a similar double role for the CE key, when an error is to be
supgrgssed under program control at the same time a second display value is
needed. -

TI*s COMPUTER MONITORED REPAIR SERVICE
A reliable source reports that a new automated-tracking repair
gservice for TI machines is in operation at the Lubbock (Texas) facility.
Bar-coded stickers are placed on incoming machines, and provide a means to
getergine in real time, whereabouts and status. Turnarounds are typically
our y8.

52-NOTES ViN3p6 (end)

