g“’* *‘I"l'* * * i Lo L o L i 2 :Gi**
* * % -

**** ** L L2 2 ** § § g . :
. ‘l’**** :"** *] %% %% *8%

Volume 1 Number 5 48/u8 ~ October 1976

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 4s5k24

------------l-----—---------—-----

EDITORIAL '

With four months and four newsletters behind us, I would like to
re-examine Club purpose, goals, and operation.

All things considered, I see no reason to change the original
purpose: to get more out of our machines by exchanging ideas. To date,
more than 30 members have shared new ideas/provocative questions/useful
information that have served as newsletter inputs in one way or another,
and I am happy to take thic opportunity on behalf of all the membership
to thank them. Also, I appreciate the effort taken by many others in
sending me material which for one reason or another has not been used.
But how about the rest of you? You don't have to be an experienced
programmer to discover something new... you mostly need some organized
curiozi*y along with a fair amount of perseverance. I welcome and will
publish whole programs that are not destined to join the TI PPX-52
library and which demonstrate, and are accompanied by descriptions of,
new mechanizations. But I will continue to give priority to new, clever
routines that have broad application. There is still much yet to be
explored and discovereds useful pseudo sequences (see the article on
pseudos elsewhere in this issue), optimum approaches to a host of combin-
atorial and numerical analysis problems, new computer programming teach-
ing techniques, extended I/0 via the printer interface terminal and card
reader, and practical applications of programmed card recad/write... jJust
to name a few. I will continue to share my best ideas so long as I have
reason to believe that a reasonable number of other members are doing
the same. I don't want to see our Club become mostly a publisher-
subscriber creration, and I hope most of you feel the.same way. Most of
what I've just said applies to the SR-56 too, only more so, since I don't
expect to provide any input on this machine. :

.Monetary contributions at the rate of $1.00 per issue tontinue to
Provide an adequate operating fund, and I thank those who have contributed
more, and who have been sufficiently pleased with newsletters to date to
contribute toward publication past the first pix issues. I do not intend
to issue formal reminders for contribution renewal, but will assume that
overdue members are no longer interested, and remove their names from
membership and mailing lists. Incidently, I appreciate the fact that
members living abroad have volunteered extra contributions when added
postage is required.

Let me close this commentary by assuring all of you that I consider
my time and effort to be well spent, and it is with pleasant anticipation
that I look forward to getting inputs from members who have so far been
among the silent majority, as well as to getting more gems from the
productive minor-ity. ' y

The SR-52 Users Club is a non-profit loosely organised group of SR-52/56 owners/users
vwhe wish to get more cut of their machines by exchanging ideas. Activity centers

on a monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh

in Deyton, Ohio. The SR=52 Users Club is neither sponsored nor officially sanctioned
by Texas Instruments, Incorporated. Membership is open to any interested person,

and a contribution of $6.00 brings the sender six issues of 52-NOTES.

TI*s SR~-52 Programming Workbook

TI is giving each PPX-52 member a Programming Workbook which it says
normally sells for $4.95. It looks to me as though it might help the
novice programmer get started, as it was designed to help SR-52 users ‘
who have had little or no prior programming experience. Basic programming
ccncepts are explained in great detail and in very elementary terms.

However, I would advise the reader/user to assume that while the sample
routines and programs may demonstrate correct mechanizations, they are
not necessarily examples of good programming. For instance, it goes
without saying that the concept and use of subroutines are important
aspects of programming. Yet, a poor example was chosen to illustrate
the subroutine section of the workbook. The reader is left with the
impression that a one-time calculation, the results of which are used
twice, should be made into a subroutine and called twice.

An appendix of advanced programming techniques touches on some of the
programming tricks and most of the previously unannounced features

lready familiar to many of us. Discussion is avowedly brief to
discourage the novice from getting hopelessly entangled in exotic schemes.
Unfortunately, some critical omissions are likely to cause, not suppress
confucion. One such concerns code transferability, and is the omission
of the requirement that an octet of program steps may not end in the
- code for a number if it is to be transferable (see ViN2p2). The work-
boock implication is that a 0, 2, 4, or 6 in the units place at the top

of the octet is sufficient to make the octet transferable.

All things considered, I recommend this workbook to any SR-52 user
who finds it difficult to understand the Owner's Manual and/or has done
little or no programming, as an aid to getting started. But it is not
likely to help anyone to write optimized/complex programs, and it right
even be a hindrance. .

PPX-52 Status
Word from TI indicates that the first catalog of SR-52 programs
will be mailed October 25th to PPX members. A

SHOCTING STARS SOLUTIONS)

B H Andrews(20), Phil Sturmfels(49), Dwight Kucera(223), C A Matz(282),
F W Iehan(300), and E S Molin(307) have all found that they can sclve
the Shooting Stars puzzle (ViNip3) in eleven shots. Dwight suggests an
analog to Shooting Stars which he refers to as the Big Bang in reverse:
the starting "universe®™ is a black hole surrounded by stars; the end,
a star surrounded by black holes. This appears to be an easier puzzle
(no doubt helped by the un-forced first move), and Dwight has found a
solution in five shots.

SHOOTING STARS PROGRAM ADDENDUM
Step 2 of the users instructions for the Shooti:g Stars program
(ViN4p3) should include a "press A" statement that initiates processing.

SR-52 "CRASI™
, Phil Sturmfels(49) and Chuck Sanford(214) have discovered that a
sequence of the form: ®LBL A *dsz A *LBL B can lead to an apparently
unrecoverable "crash” (only the two_minus signs show). Some reasonably
large integer (99 or 500 or what have you) is first stored in Reg 00.
Then the sequence A,HLT, B is keyed manually in RUN mode. If the display
lashes, key CE and repeat A, HLT, B until the two minus signs are steadily
displayed. The only known way out of this state is to turn the machine .

off,
- 52-NOTES ViN5p2

“‘

PSEUDOS

A number of members seem to be having difficulty with pseudos, so
I will attempt to pull together and expand previous explanations that
were apparently not clear to all.

First, let me defend my choice of the word "pseudo” which in the
context of SR-52 usage I define as any user-generated instruction code
not directly keyable in LRN mode. One member (sorry, I don't recall
who) suggests that the word "code” might be a better descriptor, since
in computerese, pseudo refers to an instruction which is not directly
executable, such as an assembler directive. Well, in this sense, most,
if not all SR-52 instructions are pseudos since each starts a sequence
of firmware instructions to obtain final results. However, the LRN mode
keyable instructions, their associated machine instruction sequences,
and execution results were presumably designed into the machine as
predictable cause-effect entities and to me qualify under the heading of
*SR-52 instructions”, as contrasted with what I call“SR-52 pseudos”
vhich set in motion unknown sequences of machine instructions, whose
final results may only be partially evident to the user.

But let's press on to the problem of how to create pseudos. I
suspect that members who have been unsuccessful so far have also
experienced difficulty wading through the register behavior discussions
(ViNip4,p5 and ViN2pi,p2), so I'1l avoid technical detail as much as I
can, and try a step-by-step approach. If you have not already done so,
I recommend writing down a table that shows which program steps are
contained in which program memory registers: a reference that you can
g0 to when you need to know that say, step 005 is in Reg 70, or that
step 153 is in Reg 89, etc. In other words, write down the complete

. sequence implied by: 000-007 Reg 70, 008-015 Reg 71, ...216-223 Reg 97.
Now, when you need a pseudo somewhere in a program you are keying in,
first determine what program memory register it will be stored in. For
instance, in the Streamlined Dynamic NIM game (viN4p6), we find a
requirement for a pseudo 84 at step O49. From our table, we see that
step 049 is contained in Reg 76. The next thing to do is to create
the pseudo as a run mode number which can be stored in the desired
program-memory register. In our example, we need an 84 in Reg 76. By
folliowing the rules governing register behavior we could place the
84 directly at the desired ptep (second in our example) within the
octet of stepg comprising Reg 76 by keyings -1 EE 40 STO 76 8 EE 28
SUM ?6. But it is £robably eagier, and in this case simpler Just to
key 84 STO 76 GTO 049, and then in LRN mode keying: *del *del *del *del
*del *del. In either case any prior Reg 76 contents is destroyed, so
the pseudo should be positioned before surrounding code is keyed in.
For the NIM program, I recommend creating both pseudo 84s before writing
other code. The second one is at step 174 (which is the seventh step
in Reg 91), and only requires the sequence: 84 STO 91 GTO 174 LRN *del.

‘Pgeudo behavior is something else, and so far as I know has only
been superficially explored. Pseudo 84 appears to be a handy one-
instruction error-condition producer. But does it do anything else?
The sequence: *LBL A pseudo 84 HLT produces a flashing -1 =99 when
executed, but an executeds #LBL A *pi X pseudo 84 HIT followed by a
manually keyed:s CE =, produces fractured digits (see ViNip3 and ViN2p5).
Now, this is just the beginning. What is the effect of preceding and

. following a pseudo 84 by all possible combinations of all the other
“regular® instructions? Add to that all non-duplicating combinations of
all 17 pseudos (VIN2plk) with the "regulars”, and it is evident that
it will bve gome time before we know all there is to know about pseudo
behavior! (Ofcourse, there are probably quite a few interestin§
sequences of "regulars"™ that have yet to be discovered, as well

52-NOTES ViN5p3

PSEUDOS (con) -] , |
There may be an added complication concerning pseudos, es all

SR-52s5 may not respend in the same way when either generating or
executing pseudos. Anyone following the suggested steps above to
write pseudo 84s in the NIM game who gets different or unworkable
results should let me know, stating results obtained, and the machine
gerial number. Vince Salemme (202%.reports difficulty with his
machine (#14046) when attempting to fill Reg 70 and 71 with pseudo 26s
by storing the number: -2.626262626 -62 in Reg 70 and 71. If you
key the sequences 2.626262626 +/- EE +/- 62 STO 70 STO 71, steps
000-015 gshould bes 26 06 00 26 26 26 26 26 26 06 00 26 26 26 26 26.
Vince claims that step 000 shows up with pseudo 66 instead of 26.
According to register behavior rules, a pseudo 66 is positioned
directly at step 000 by storing a number likes -1 EE -6 in Reg 70.
(The number must have both its mantissa and exponent negative and
have a 6 in the units place of the exponent).

I invite members to experiment systematically with different
sequences involving pseudos, and to send me results and conclusions.
I'1l attempt to put it all together in a future newsletter.

ADVANCED PRCGRAMMING TECHNIQUES (Part II: Table Lookup Optimization)
The method used in the "Solution To 4 Simultaneous Equations*
progran (ViNip2) to squeeze a lot of RCLs into a relatively small
amount of program memory may be used to advantage in a broad range of .
applications. But, as in any attempt at memory-space optimization,
it is importent not to lose sight of overall objectives. If an ~
efficient practical application is desired, there is no point in
saving program steps when resulting execution time, I/0 handling, or
error esccumulations are unacceptable. And it is even possible that
the "overhead” required to control and run optimized routines makes
the total number of program steps more than was required in the first
place. On the other hand, if the primary objective is to demonstrate
a programming technique, inefficiencies don't matter.) '
For the discussion that follows, let's assume that memory-space
optimization is the primary objective. As the VIN4p2 program shows, it
is not difficult to pack 6 reglster-pointers into one table-register.
But how abtout more? If the radix (decimal) point is to be moved two
places at a time to present desired pointers, 6 would appear to be the
limit, In this case, each pointer can be in the et 0-99., But
suppose the entire range isn't required. In the ViN4p2 program, only
registers 00 through 15 need to be pointed to. The capability of
poin%irg to Reg 16 through 99 is unused, and is effectively wasted.
Fortunately, this unused range can be traded for more pointers by .
using snother number base. Moving the decimal point two places to the
left ie accomplished by dividing the number by one hundred. .If instead,
we move the radix by dividing by sixteen and perform a few base sixteen
manipuiations, we find it possible to pack up to ten pointers in the
0-15 range into one table-register. Unfortunately, we can't take
advantage of the SR-52's ability to act only on the two least signifi-
cant digits of the integer part of a large positive real (ViN3pi) when
it indirectly addresses a register, since the two digits need to be in
a base ten (or modified base 100, ‘n=1,2,...10) system. Instead, we
can effectively move the base sixteen radix point to the left in the
decimal representation of a base sixteen number by successive divisions
by sixteen, using the normalized remainder (the decimal remainder is
multiplied by 16 @nd rounded up) each time as the next pointer, and

52-NOTES V1N5ph

leaving a successively shrinking integer part for the next division. But

‘ in order to get 10 pointers per table-register this way, we need to carry
13 base ten places, which means using register arithmetic, and integer/
fraction separation within a register. The "overhead" to do all this is
significantly greater than that required if only ten places are carried,
in which case we can only pack 8 pointers per table-register. So it
becomes a trade-off. The following routines show what can be done, and
what the overhead "ballpark® is: #*LBL A + 16 #PROD 69 0 = SUM 69 %*rtn
#ILBL B RCL 69 div 16 - INV #D,MS INV #D.MS #fix O #D,MS STO 69 = X 16
= #fix 0 #D,MS INV #fix #rtn #LBL C 16 INV *PROD 69 RCL 69 STO 68 STO 67
1 EE 12 SUM 67 INV SUM 67 RCL 67 STO 69 INV SUM 68 X 16 = INV EE *fix 0
*D.MS *rtn. Routine A packs pointers into Reg 69 and routines B and C
unpack them: B for up to 8 pointers, C for 9 or 10. For example, to
pack the pointers: 15, 3, 9, 13, &4, 8, 14, 1, 11, 7; key CLR, then each
number followed by A. Reg 69 holds the integer: 1046315852215 which
represents the ten pointers in packed form. These will only unpack
correctly (in reverse order) if routine C is used (just press C for
each pointer). Try a string of 8 pointers (i: the 0-15 range) and unpack
them with routine B. In a practical application, routine A would be used
to help write the main program by generating the table-register constants
to be permanently stored in program memory. These could either be
manually stored as each constant is generated, transfering the contents
of Reg 69 to the desired program-memory register, or routine A could
be enhanced to do this automatically. Once the main program has been
written, routine A is no longer needed, and therefore does not add to
the overhead. As writicn, routines B and C would only unpack Reg 69.

. Whichever is to be used in a practical application needs another routine
that steps through the permanent table-registers, passing via Reg 69 the
required packed data to routine B or C for unpacking.

let's assume that we have a main program in mind that requires a
100-element lookup table. We will design routine E such that each time
it is called, it makes Reg 98 a pointer to a data register in accordance
with a pre-determined sequence. We will also assume that the required
lookup table has been stored in Reg 88-97 (assuming ten pointers per
register)., -With the following initialization prior to its first call:s
10 STO 00 88 STO 99 RCL 88 STO 69, routine E might look likes #LBL E
C STO 98 *dsz #*LBL #LBL *rtn 10 STO 00 1 SUM 99 #IND RCL 99 STO 69 *rtn.
At each call (from a main program) routine E returns with Reg 98 pointing
to the next desired data register. It is, ofcourse, up to the main
program to indirectly address Reg 98 after each call to E and do what is
desired with the retrieved datum. : :

-Let's take the simple requirement that all the main program needs
to'do 'is’ sum the products of 50 successive pairs of 16 numbers in
accordance with a predetermined ordering. If this were to be mechanized
by a -straight forward succession of 50 groups of steps of the farm:

RCL ab X RCL c¢d D, where *LBL D = SUM 19 *rtn is the called subroutine D
and ab and cd easume values in the range 00-15, over 400 program steps
would be required, But if we make use of routine E, then a m2in program
A might look like: ®LBL A #CMs 10 STO 00 88 STO 99 RCL 88 STO 69 *LBL *1°
RCL 99 - 98 = #ifzro #LBL E *IND RCL 98 STO 18 E *IND RCL 98 X RCL 18 =

. SUM 19 GTO #1' which although not very efficiently written, gets the
whole Jjob done within available program memory. Incidently, the "*LBL E"
sequence in routine A does no harm, provided the real subroutine E is
nearer the top of program memory than routine A. If the body of routine
E were placed following the *LBL E in routine A,a non-? encountered by
the #*ifzro test would cause routine E to be executed twice (see ViN4pl).

52-NOTES ViN5p5

TABLE LOOKUP OPTIMIZATION (con)
But would we have done better packing only 8 pointers per table-
register, and having routine E call B instead of C? Well, we would
save 21 steps using routine B, but would need 3 more table-registers, for
a net loss of 3 steps: an acceptable alternative since there is enough
program memory, and probably better since routine B runs faster than C.
What all this boils down to is that an optimized table lookup
scheme should take into account at least three factors: 1) the number
of table elements, 2) the range of values assigned to table elements, and
3) the availability of unused program memory that can provide room for
speedier code. Thus if the ViNAp2 program were to be "optimized"” with
denser pointer packing, it would run slower, and there would be no gain,
only a loss, as the program already fits on one card. But how about a
4 X 4 matrix inversion, or high-order polynomial curve-fitting programs?
Tabée lookup optimization may be the only way to get them to fit on one
card.

TIPS

Battery Charger Connecting: Brian Sullivan(247) reports erratic
SR~52 behavior if the charger is plugged in after the calculator is
turned on. This may be due to connector plug shorting as it is inserted
into the socket. It is probably wise not to plug the charger in while
the machine is on. Similarly, when using the printer, turn it on first
with the calculator locked into place before turning the calculator on.

Exchanging Mag Cards: Members attempting to exchange mag cards
recorced on different machines should be aware of at least two potential
difficultiess 1) misreads may occur because of different drive/clocking
rates, and 2) the fact that a number of SR-528 were manufactured with
an implied multiplication following a closing parenthesis. This second
problem can be mitigated if programs written utilizing implied multipli-
cation are annotated accordingly.

Mag Card Static Charges Phil Sturmfels(O049) sugeests that temporary
buildups of static electricity on mag cards may account for their not
reading or writing properly on occasion. On one occasion, Phil couldn®t
get a brand new card to be written on, so shot it with a Zero-Stat
static-neutralizing device designed for phonograph records, and some
minutes later succeeded in writing on it.

ROUTINES

Jared Weinberger(221) has come through again with another routine,
although this time claiming modestly that it might win the "Trivia Award'
of the Year"., I tend to disagree, since it performs a potentially useful
service, and the mechanization provides an interesting insight to display
manipulations. Jared calls his routine "Fixed Point Extractor", and it
lists as follows: #*LBL A (10 #I3L #1' (INV EE - 1) + +/- INV #log EE
INV EE #ifzro #1* 0) *rtn. When run, this routine returns with an
integer in the range 0-9 in the display which represents the display
format at the time the routine wes invoked. I would only add that the
routine appears to work just as well without the inner parentheses. The
outer ones are, ofcourse, to protect main-program pending operations if
this routine is called as a subroutine.

52-NOTES ViN5p6 (end)

