E**** *5*:* 2** * t**** **E** P~ :§***

‘ ****1 o wunn X w § E i P
P Eannn ¥ * PP -4 Eunnsn “wus
Volume i Number 6 Lg/u8 November 1976

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

DECAPOWER

In the January 1976 issue of 65-NOTES (V3Nip4#) Jim Davidson (HP-65
Users Club member #547) suggested the term "decapower” as a descriptor
for the power-of-ten multiplier used in scientific notation displays.
I'm going to begin using it in place of "exponent"” which is technically
incorrect, and the letter D to separate the "mantissa"” from the deca-~ 4
power for typewritten numbers, as Jim also suggests. For example, 123~ 5
which is displayed in scientific notation as 1.23 -43 will now be written
1.23D-43, Perhaps, as this notation gets more and more usage, the
calculator manufacturers will change their keyboard abbreviations. HP's
EEX and TI’s EE could be changsd to ED (for enter decapower).

FORUI :

Prograrming Help: Ray Mackay (358) 32 Woodhouse Road, Doncaster
East, Victoria, 3109, Australia needs an SR-52/PC-100 program "...which

. can analyse at least 32 sample points on a wave form (by Fourier or
Chebyshev) and print out the resultant AMPLITUDES and ADVANCE/LAG OF
PHASE equal to 4 of the number of sample points... i.e. with 32 sample
points 16 harmonics and i6 phase angles. Wave forms must be able to be
CDD and EVEN although the programme can be set to run for elther case
as an alternative.” I ask that anyone responding to Ray's request inform
me via correspondence copy, as I will want to know how useful such
requests for help turn out to be, and may want to share some resultlnﬁ
programs or routines with other members via the Newsletter (see VIN2p)

Implied Multiplication: Graham Kendall (184) asks for a test to

determine whether a particular SR-52 operates with implied multiplication
(see VIN5p6). Although I have not seen such a machine, I have reason to
beiieve that there are some, and that the following test should work as
an identifier: in RUN mode key: 2 (4 +8) =. For an implied-multiplica-
tion machine, the result should be 24; for other machines, the answer
would te 12. Anyone having an implied-multiplication SR-52, please let
me know. '

FACHINE INTZRFACE SPECIFICATIONS

Contrary to a purported statement by a TI rep at a recent WESCON
meeting (as reported in 65-NOTES V3N?p11¥. TI is not making public any
interface specifications on the PC-100, or the SR-52, for that matter.
TI does not encourage the use of any of its machines for other than its
designed and putlished purposes.

‘ The SR-52 Users Club is a non-proflt loogely organized group of SR-52/56 cwners/users
who wi:l to get more out of their mschines by exchanging idess. Activity centers
wn a monthly newsletter, 52-NOTES edited and published by Richard C Varderburgh
in Deyton, Ohic. The SR-52 Users Club is neither sponsored nor officiaslly sanctioned
by Texes Instruments, Incorporated. Membership is open to any interested person,
and a contribution of $6.00 brings the serder six issues of 52-NOTES.

designed to either display results or receive a manually input number,
or both, at a programmed HLT). Bob cites a simple example where, in
the business world, commissions are calculated and added to gross on
purchases, or deducted from sales, to get net. If commission is in

Reg 00 and purchase price or sales price is in Reg 01, the sequence:
#LBL E RCL 01 HLT RCL 00 = HIT will handle either case, provided the
user keys a + at the first HLT for a purchase, or a - for a sales,
followed by RUN to get net. This approach applies to any other functions
or sequences that the user might want to key in manually, provided the
programmed HLT does not separate steps that must be contiguous. For
example, if the sequences *LBL A RCL HIT is executed, the HLT cancels
the effectiveness of the RCL, and a number entered manually is treated
as a datum, not the address of a register whose contents is to be
reirieved. If you are not sure what effect a programmed HLT might have
irn connecting programmed execution on both "sides” of a manual entry,
try a critical portion of the sequence manually (including the inter-
necdiate HLT) and see if each display shows what is intended. Ofcourse,
none of this has much practical use if there is enough program memory
and a sufficiency of user defined labels to write separate routines for
every desired alternative. From the user's viewpoint, the best programs/
routines are the easiest/fastest to run, and whose results are the
easiest to interpret. '

The Use of Inexact Functions_To Produce Integerss Peter Stark (321)
laments the frustration encountered when assuming that the SR-52 produces
the integer 8 when executing the sequence: 2 y* 3 =. The resultant
8.000000000001 is certainly close enough to 8 for many applications, but
not for others, such as *dsz use in Reg 00, since one trillionth is not
small enough to pass for zero, and would cause the %*dsz loop to be
processed one more time than was presumably intended. In general, if an
integer is to be produced by any of the built-in functions: 1lnx, *log,
INV 1nx, INV %*log, yX, xrty,%*rtx, #1/x or #*x! it is best to round it up.
The sequence: *fix O #D.MS will work for most cases.

labels, a call to an unused one does the trick. For example, the ter-
minating sequence: ...*E' HLT flashes the display, provided *LBL*E'
has not been defined anywhere. Then if you need to save even more steps,
and can organize things so that your error-producing routine takes up
the last few steps, something along the lines ofs ...221 RCL, 222 9,
225 8 will work. (Reg 98 needs to contain whatever you want to be flashed).
Intentionally allowing program execution to try to proceed past step 223
saves both a HLT and an error producer.

Use of Flags_5-93 The discovery that the non-existent flags ;—9_
can be put to good use was brought to my attention by T. S. Cox (9) via
a copy of a note by S. A. Woods in the 16 Sept 76 issue of ELECTRONICS
(p122¥. and by Stephen Bepko (45). In much the same sense that you can
recall zeros from the non-existent Reg 20-59 (ViINipl4) you can test flags
5-9 (which are always off, or unset) cither inversely or directly, and
cause either a branch or a skip, respectively. Stephen has found a useful
application for this discovery in a category of statistics programs, to

$2-NOTES ViN6p2

cancel entry errors via the same routine that normally processes the
eBtriss. Typacglly, X,y pairs of inputs are summed separately as x, Yy,
X, y y<.

, y XY, X If all the required arithmetic is performed in
registers, then it can be "undone” by setting a 0 divide O error
condition (ViNip2) once, and taking advantage of the viability of the
INV prefix (ViNip2). Stephen suggests the start of a data entry
routine along the lines of: #*LBL A #ifflg 9 %*#1* #*LBL #*2' ... *LBL 1°
0 div 0 = GTO *2'. Data entered for normal processing would be followed
by A; data re-entered for deletion would be followed by INV A. The
sequence following *LBL*2' would perform all the register arithmetic
either normally or during 0 divide O error conditions. v

An_Executable Separation_of Register_Operator and Operand: In
experimenting with unusual STOs and RCLs in RUN mode, James Griggs (13)
found the sequences STO SST SST and RCL SST SST somewhat puzzling.

What appears to happen is that if the two program steps that would be
executed by two successive SSTs contain numeral op-codes, then they

are connected to the manually keyed STO or RCL. For example,. in LRN

mode starting at step 000, key:s 1189. Then in RUN mode keys 222 STO 11
CLR *rset RCL SST SST and you will see the 222 retrieved from Reg 11.

Now key: STO SST SST CLR RCL 89, and see the 222 that the STO SST SST
put into Reg 89. If you try to execute the two SST'd steps automatically,
the operator-operand connection is lost.

A New Facet to_the_CLR Functions During the course of experimenting
immediately destroy a "hardened” display (not alterable by keying addi-
tional numerals). Apparently, the display register keeps the cleared
number until something (other than more CLRSs, CEs, or numerals) .
hardens a new number. To see how this works, write the sequence #*LBL A
pseudo 83 CE RCL 60 HLT, Then in RUN mode, key *pi, CLR, A and pi is
resurrected. About all you can do between the CLR and the A is to press
any number of CLRs, CEs, or numerals without really clearing the input
pi. This routine would be handy as part of a program requiring lots of
keyed inputs, as a means of retrieving inadvertently cleared or over-
written entries.

ROUTINES

Digplaying 11th,_12th and 13th_Digits: Graham Kendall (184) has
devised a fractured-digits related scheme (see VIN2p5) to display the
last 3 hidden digits (following the 4th through 10th): #*LBL E STO 99
0 + STO 60 RCL 99 HLT. With the 13-digit number in the display, press
E, then =, and see the last ten digits (without any decimal point) in
the display. E. L. Parsons (65) accomplishes the same result in fewer
steps, but requires creation of a psc::do, unless the sequence is manually
keyeds #*LBL E + STO 60 = pseudo 31. Again, with the 13=digit number
in the display, press E, then LRN, and see the same resylt. By either
method, the resulting display cannpt be produced entirely under program
control, and canpot be printed.

Timed "Crash": Graham Kendall (184) has discovered that when the
SR-52 is commanded to branch indirectly to an out-of-range address, 1t
appears to perform an operation on the out-of-range number, the execution
of which varies linearly with the size of the number, To see how this
works, in RUN mode key: 1 EE 5 STO 00 #IND GTO 00, and note that it takes
about 3 seconds for the display to be flashed. Now try 1 EE 6, and it
will take about 32 ceconds. Graham ran five trials between 1D5 and 3D6
which indicate that if the operation amounts to a one by one decrement of
the number, then a rate of about 32 microseconds per decrement applies.

52-NOTES V1N6p3

A DIFFERENCE-TABLE PROGRAM USING THE PC-100 PRINTER

There are probably enough uses of difference tables in applied math
and engineering to warrant devoting some 52-NOTES space to this topic.
The program that follows demonstrates a convenient way to convert unused
program memory into added data input capability, and takes advantage of
the SR-52's multiple pointer capability. It should be noted that there
is no point in generating the type of mathematical table that provides a
function evaluation corresponding to an entry argument, since the SR-52
can compute the function for any specific argument (i.e. why print a
table of sines when the machine can compute the sine of any input angle?).
But most applications of difference tables involve comparisons among all
the table elements, to spot critical characteristics or patterns, and
this requires that the tables be presented in their entireties to the
user. For those unfamiliar with what I am talking about, perhaps the
following example of a difference table will help:

The first column ie a given string of numbers, 9 5 2 o
the second contains first differences, and is 16 9 2
formed by taking the difference of successive 25

pairs of the given numbers; the third by the differences between succes-
sive pairs of second column numbers, etc. The following program takes up
to 32 input numbers and calculates and prints all possible fferences:

SR-52 Pragram: Difference Tables (with PC-100 Printer) Ed

1. Key first column 1 element, press A; see 1 (indicating first element
has been processed), and see printed confirmation of the input.

2, Key ith column 1 ¢lement, press RUN; see i displayed and printed
confirmation of the input. Repeat for i=2,3,... LT 33

3. Get the difference table printed: press E; printed output is grouped ‘
by table column. Each group begins with the column number formatted :
to 8 decimal places, followed by the differences.

o - Program Listing
000: *LBL A *pap *pap *prt STO 88 88 STO 69 1 STO 64
0i7s HLT + 1 SUM 69 SUM 64 0 = #IND STO 69 *prt RCL 64 GTO 017
O40: #*LBL E 1 STO 65 RCL 69 - 1 = STO 68
055s B8 STO 66 89 STO 67 *pap RCL 65 #fix 8 *prt INV #fix RCL 68 STO 64
080s *IND RCL 67 - *gﬁp RCL 66 = %*prt *IND STO 66 1 SUM 66 SUM 67
1023 INV SUM 64 RCL - 87 = INV #ifzro 080 1 INV SUIl 68 SUM 65 RCL 68
i29: = 87 = INV ®*ifzro 055 ®*pap %pap %pap #pap O HLT

The "REVISED" SR-52 OWNER's MANUAL

Acting on TI's statement to me concerning the new Owner's Manual
(ViN4p1), I ordered one. As I soon discovered, there has been no signi-
ficant change or addition between the 1220447-1 and 1220447-2C editions.
Not even all the errors have been corrected. Apparently, TI meant to
convey to me that beginning last August, those buying new SR-52s would
get the Programming Workbook (ViIN5p2) as a supplement to the Owner's
Menual. I regret having disseminated incorrect information, and hope
that those of you who have ordered the "new" Owner's Manual are able to
exchange it for the Programming Workbook, or get a refund, whichever is
desired. : : ,
LOCAL CLUBS . - .

"The names of and contacts for local calculator clubs that might be
of interest to SR-52 or SR-56 users will be noted in this space. The
firgst to come to my attention is CHIP, in the Chicago area. Contact
Craig Pearce (18) for information.

52-NOTES ViN6ph

REGISTER EXCHANGE FOR DATA RECORDING AND RETRIEVAL

' Data storage and retrieval via magnetic cards is a powerful SR-52
capability, especially if optimally programmed. The concept centers
on the exchange of progrm and data registers. In most practical appli-
cations, data are first produced and stored in data registers, then
transferred to program registers whose contents can be stored on mag
cards. This process is reversed for data retrieval. Although at first
glance it might appear that mechanization would be straight forward,
there are trade-offs that should be considered. First, let's take a
look at register distribution. There are 60 addressable registers
that will hold data, the contents of 28 of which are also capable of
being recorded on mag cards. Thus it would appear that a maximum of
23 separate data could be stored and retrieved. But if all 28 program-
stored registers were used for data, there would be no room for a
transfer program, and only 2 data registers (presumably Reg 60 and 61)
would be available to the data-producing program as working/pending
arithmetic registers. While we might be able to get by with only Reg
60 and 61 for data production, the requirement to manually transfer data
to and from program registers would defeat our primary purpose: to
store and retrieve data automatically and accurately. So assuming that
we need a transfer program, let's see what it should do, and how to go
about optimizing it.

If the transfer program size is to be minimized, it will need a
loop within which pointers can be readily "moved". The most efficient
way to move the pointers is to increment or decrement them each time
the loop is executed. Now, this means that all the program and data

.registers concerned in the transfer must be consecutively addressable
in their respective categories. The program registers present no
problem, but it would appear that the longest addressable sequence of
data registers is from 98, 99, 100, ... 119 (see ViNip5 and ViN3p1).
These 22 data registers would require a corresponding number of program
registers, which would leave 6 (the equivalent of 48 pro steps)
available for the transfer program. Now let's see if this is sufficient
for all that we would like done. In order of priority, here is a likely
set of requirements: 1) Transfer data from 22 program registers to 22
data registers, 2) transfer data from 22 data registers to 22 program
registers, 3) have the option of transfering only as many data as are
needed, and 4) have the program tell us which registers are unused
(when we transfer less than 22 data). As minimum, we need 1) and 2),
or there is not much point in proceeding. On page 89 of its Program-
ming Workbook (see ViIN5p2), TI shows how 1) and 2) can be mechanized,
but its program takes 63 steps (15 steps over the 48 available). The
resulting partial over-write is acceptable provided the user keeps the
transfer routine safely recorded on a "master" card which must be
entered each time a new set of data are to be recorded (on a separate
card), It would be handier (and require fewer card-reads) if both
transfers could be accomplished by the same routine. A program that
Ron Zussman (88) wrote back in January 1976 does this, and with a few
modifications, does 3) and half of 4):

SR-52 Program: Register Exchange Zussman/Ed
' ' Program Listing
000: #LBL A +/- + 98 STO 69 = STO 68

013t *IND RCL 69 #IND *EXC 68 #IND STO 69 1 SUM 68 SUM 69 97 -
035: RCL 68 = #ifpos 013 RCL 69 HLT

52-NOTES V1N6p5

SR-52 Program: Register Exchange (con)
User Instructions
To Prepare Mag Card:

1. Run a program that stores data to be recorded in Reg 98-119

2. Enter Register Exchange Program (46 steps starting at step 000},
either manually or by card.

3. Key the number of data registers to be exchanged, press A.
Address of next available data register is displayed (120
indicates all are used). Data have been transferred.

L, Record (or re-record) card (both sides); note on card how many
data have been recorded.

To Use Recorded Data

1. Read card (both sides)

2, Key number of data registers to be exchanged, press Aj;
see displayed address of next available data register.

3. Read (or manually write) program that is to use the data, and
run it.

SR-56 PROGRAM EXCHANGE

David W. Johnston (5) is offering to serve as a focal point for the
exchange of SR-56 programs. Dave proposes to run this service at mini-
mum cost to users: SASE for a catalog of programs, and SASE plus 5¢ per
page (or equivalence in stamps) for requested programs. Program contri-
butors should send Xerox-reproducible copies to both Dave and me. There
will be no attempt to referee any programs in any manner, and the only
reward to contributors will be the potential satisfaction of sharing
their creations.

Davelas already written a number of programs to start things off,
and if the other SR-56 members will share their programs, our SR-356
Program Exchange activity has a good chance of succeeding, especially
since TI is not providing such a service. I hope that as the Exchange
progresses, new programming technigues will evolve that will provide
good SR-56 material for the Newsletter.

TABLE LOOKUP OFTIMIZATION ADDENDUM
Graham Kendall (184) has kindly noted an omission in routine C

(VINSp5). The sequences: ... INV SUM 68 X 16 = ... shou’d read: ...INV
SuM 68 RCL 68 X 16 = ,,, .

MORE ON DISPLAYING 11th 12th and 13th DIGITS

Putting to use Jared Weinberber's end-of-program LRN discovery
(Vinkp6), if Ed Parson's routine E (Vinép3) is placed in Reg 97, it can
be called either by pressing E, or by another program, and the desired
last ten digits will be automatically diaplayed. However, if the call
is by another program, there is no execution of a *rtn, and the return-

pointer needs to be reset.
MORE ON SHOOTING STARS (V1th3)

Stephen Bepko (45) has a 13-shot sequence that shoots out all the
stars.

52-NOTES V1Né6pb
{(end)

