* %% %4 *%%
gl'l"l-* *'I"I-:* % z ’f**** 9% t »
* %% *‘I' %N ** E 2 g** ****
*3 * *

L L 2. L t**** t t **i** L a d 2 % %%

Volume 1 Number 7 L8 /48 December 1976

Newsletter of the SR-52 Users Club
published at
9459 Taylersville Road
Dayton, OH 45424

SEASON'S GREETINGS TO ALL!

It has been very gratifying to receive so many letters that say
you like the way the Club and 52-NOTES have been going. I'll do my
best to continue to live up to your expectations, and take this oppor-
tunity to wish you and yours a happy holiday season and a challenging
Year ahead.

ROUNDING TERMINOLOGY

I have been guilty of using the term “round-up" rather loosely, and
will herewith define specific terms that will a2pply to 52-~-NOTES usage
henceforth. I will use the word “"round” by itself to mean what is
sometimes referred to as round-off, or symmetrical rounding, and is
what I meant by using "round-up” in ViNip2, ViNs5pl4 and ViNép2: Digits
5 through 9 increment the next higher digit (place) by one; 0 through &4
have no effect. The term "round-up” will be used when all the digits
1-9 cause the next higher digit 1o be incremented by one. If I ever use
*round-down”, it will be synonymous with "truncate". Thus 1.2 rounds to
1, but rounds-up to 23 9.8 both rounds and rounds up to i0, but truncates
to 9. v

THE FIRST TI PPX-52 CATALOG

TI has published and mailed to PPX-52 members the first Software
Catalog (November 1976) which partitions SR-52 programs into 11 major
categories, which are further subdivided into = %*otal of 99 topics. 62
of these are represented in this first catzlog, leaving 37 still to be
addressed by contributors. Of some 450 pregroms, approximately 235 were
contributed; 215 selected from TI's applications library. I expect that
program quality will vary considerably from program to program, and
there are already indications of functionzl duplication. As Ciub members
who have joined PPX-52 come across outstandirg progrgms, I invite them
to describe them and their key features, I will pass such information
along via 52-NOTES, but will not publish PPX~-52 programs, per se.

BRINGING THE SR-56 INTO SR-52 DISCUSSIONS

I now have an SR-56, and beginning with this issue will attempt to
include the BR-56 in SR-52 technical discussions wherever practicable.
In order to minimize special-case explanations, I will adopt a few
convenient conventions, which I will discuss here along with noting
critical differences and similarities. 52-NOTES titles expected to be
of interest to SR-52 users primarily will be followed bys (52); (56) for
SR-56 users. The presence of neither indicates targeting to users of
either machine. In general, SR-52 architecture will be the basis for
discussions and routine listings when both machines are under consider-

The SR~-52 Users Club is & non-profit loosely orgsnized group nf SR-52/56 cwners/users
who wish to get more out ¢f their machines by exchanging idess. Activity centers

on a monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh

in Dayton, Ohio. The SR-52 Users Club is neither sronsored nor officislly senctioned
by Texas Instruments, Incorporated. Membership is open to asny interested person;
suggested contributions are $6.00 per six issues ($10.00 sbrosad).

ation. Therefore I will devote some space here to an explanation of how
SR-56 users can interpret SR-52ese.

Although the SR-56 does not appear to give the user direct access
to pending operations registers (Reg 60-69 on the SR-52) or program
memory (Reg 70-97), comparable registers must exist for it to function
as it does. Thus for purposes of discussion, Reg 60-66 will identify
the pending operations registers of both machines (reference to Reg 67-
69 applies only to the SR-52, as the SR-56 holds 3 fewer pending opera-
tions). However, no attempt will be made to individually identify SR-56
program registers. SR-56 users should familiarize themselves with the
SR-52 program-memory register format (ViNipk,5) in order to follow
register behavior discussions that apply to both machines. Incidently,
an important point to keep in mind is that the architecture of most of
the common functions appears to be identical. Although the SR-56 user
can't examina data in an 8-step op-code format, he can determine the
values corresponding to the 16 places, and with a few restrictions, set
them too. Following the A to F coding outlined in ViNip4, the normal
RUN mode display shows positions A BDGHI JKL MNO P, The missing
C E P digits represent the 13th, iith and 12th mantissa places, respect-
ively, and a little maneuvering will reveal these. For example, the
sequence: 1 eX puts 2.718281828459 into the display register, but only
2.%18281828 shows. To see the 4593 STO 1 2.71 INV SUM 1 EE RCL 1, and
see 8.281828459D-3. (Incidently, INV 1lnx in SR-52ese corresponds to eX
for the SR-56). In general, to see the last 3 digits of a 13-digit
number, display it in decapower notation, store it, subtract from it the
first 3 digits (including the indicated decapower) by register arithme-
tic, then recall it. To synthesize a 13-digit numbers key the first 10
digits in decapower notation, store the display. and add to it (via
register arithmetic) the last 3 digits with a decapower 10 less than ‘
that used for the first 10 digits. For example, e to 13 places can be
synthesized by: 2.718281828 STO 1 4.59 EE +/- 2 TUM1. The restrictions on
building up the 16 places in this manner are that position B can only be
0, 2, 4 or 6 and position O cannot be made zero.

Thus the SR-56 user can follow many discussions and even try out some
examples that deal with data in op-code format. So far as I know, how-
ever, he will not be able to create pseudos (ViN5p3) or an underflowed
number (see the article on Overflow and Underflow elsewhere in this issue).
SR-56 users should translate SR-52 register operations on 2-digit operands
into appropriate 1-digit ones.

FORUM (52)

David Brown (107) finds both the SR-52 and TI's s+atistics librany
too EE oriented (complicated manipulations of small amounts of data) to
do him much good with large amounts of data that he would like to process
for social science types of applications, Although there aren't any
personal programmables yet with hundreds or thousands of storage registers,
the SR-52 has the most, and there are types of statistical processing that
can handle any number of data inputs, where inputs are used only once,
and do not need to be saved. For applications requiring separate storage
of all inputs, unused program-memory registers can help to extend data
storage capacity. These can be made contiguous with data storage
registers (for indirect'addressing) by beginning with the first unused
Pprogram register, and ending with data register 119 (same as 19).
" John Barnes (157) brings up the matter of desired features for a
successor to the SR-52. He would like to see the instruction set be a
superset of the SR-52's, have all program-memory register contents fully
transferable (see ViIN2p2), and have expandable memory (via hardware).

52~-NOTES V1iN7p2

TIPS
Use of Pseudo 73 _(52): 1 Frank Stallings (389) notes that pseudo
73 used in place of *rset works well in loops with flags, since it
executes an effective *rset without resetting flags.

Short Absolute Branch (52): Frank also notes that a conditional
only 2 designators (instead of 3). Por example, the execution of:
#ifzro g8in 5 ... branches to step 005 for a zero display, provided
#LBL sin has not been defined, or continues on if the display is not
zero. For both cases, an error condition is created. J Wentz (61) and
C Belanger (254) have also noted this effect.

Label Execution Anomaly (52): Frank goes on to suggest a peculiar
execution of labels, which I tend to suspect may indicate a problem in
his machine. Execution of the sequences *LBL A SBR sin HLT *LBL B
SBR INV HLT #LBL sin *LBL INV SUM %2 #rtn bys CLR 2 A RCL 69 in run
mode should produce 1. If this is followed by B, according to Frank,
Reg 69 would be decremented to zero, but I find Reg 69 contains 2 (which
it should, following normal label behavior). If Reg 62 ends up being
zero, then somehow the *LEL preceding INV gets ignored, and the INV is
treated as a function, not a label. Anyone else experiencing this
result, let me know.

Eleciro/Mechanical Tips: Marshall Williams (227) suggests the
use of Brilliantshine metal polish to remove desplay-ccver scratches,
and found that an uneven key-touch problem due to key-panel adhesive
oozing could be remedied by removing ercess adhesive from the panel and
keys with Energine flammable type spot remover. Marshall has designed
an adgptop that allows SR-52/56 operation from a 12v DC supply, the
circuit diagram for which he has offered to share with members sending
him a SASE. A current-limiting feature presumably precludes damage
that might be caused by power fluctuations.

.. Writing Good Diagnostigc Programs_(52): For members attempting to
write effective, efficient diagnostic programs (ViN4ph), Jared
Weinberger (2213 suggests that dynamic code modification (ViIN2p3) and
(VIN3p5) could be used to advantage.

Exgcution Time Variations With Formatting: Mike Marquis (205)
notes that display formatting affects program execution speed. He finds
EE with #INV *fix is fastest; INV EE with #fix 8 the slowest. Mike
also notes that register arithmetic is slower than dieplay arithmetic.
However, there are indications that the degree to which display format-
ting affects execution speed depends on datum values and the operations
performed. Dallas Egbert (384) notes that 1d-99 recalls from data
registers noticeably slower following a CLR. This appears to result
from the CLR putting the display in an INV EE format. For data so
recalled, execution speed decreases as values depart from 1. The rate
18 greatest toward + or - 1D-99, and least tcward + or - 1D99. I
have observed this phenomenon in both the SR~52 and SR-56 and it
pProbably deserves further exploration. A more complete understanding
of execution speed behavior can be especially helpful in the design of
long-running programs.

Revigion to Automacic Fill of Reg 60-69 (ViNip3)_(52): Several
members have noted that the STO in routine E may be deleted. (the
sequence starting at 00: X (RST executed by RST R/S in RUN mode fills
the SR-56's pending registers).

52-NOTES ViN7p3

More_On CLRf52) Stephen Franklin (217), Dallas Egbert (384) and Orla
Damk jer (393) have all noted that the number that finds its way into
Reg 60 following the sequence: CLR pseudo 83 CE on a hardened display
(see ViN6p3), is not always the same as the originally displayed number. ‘
What appears to happen is that digit B (see ViNipk,5) of the original
number is "cleared” (made zero). The effect is to make both the mantissa
and decapower signs always positive (ViNip5). Thus, only numbers greater
than or equal to one remain unchanged. This looks like a good way to get
the absolute value of any 13-digit number in this range.

More_On Timed Crash (52): Dallas also notes that if the number in
Reg 00 In Graham Kendall's Timed Crash (ViN6p3) is 1D12 or greater,
execution does not cause a timed crash. but an immediate branch to step
000 (with no apparent resets). John Allen (104) finds this dividing line
to be 1D13. Any others? (On my machine 9.999999999999D11 crashes but
1D12 does not). '

More_On INV Viability (52)s Jared Weinberger (221) notes that the
sequences CLR INV 5 #PROD 00 will divide Reg 00 by 5, but that leaving
off the CLR neuttralizes the INV, and Reg 00 is multiplied by 5. Further,
the sequences 2 INV 5 #PROD 00 divides Reg 00 by 25. Thus if there is a
program requirement for a subroutine to divide a register by a constant,
and another to multiply the same register by the same constant, something
along the lines ofs #*LBL A O *LBL B INV 123 #PROD 00 #rtn does the trick
(*LBL A O works as well as *LBL A CLR, and does not wipe out Reg 60-69). |
A call to A performs division of Reg 00 by 123; to B, multiplication,
provided a "soft" display is not passed to routine B (i.e. the call to B
is not preceded by CLR or numerals). Or, if two different constants are
required, and they can be formed by partitioning a single string of digits,
something like: #*LBL A 123 #*LBL B INV 456 #PROD 00 *rtn will divigde
Reg 00 by 123456 with a call to A, and multiply Reg 00 by 456 with a call .
to B (from a hardened display).

Charger Connection: John Allen (104) finds that the connector-short
problem (VIN5p6) can be avoided by plugging the charger into a turned-on
calculator before applying power to the charger.

More_On The 0 div 0 Error State: Stephen Bepko (45) notes that the
0 div 0 error state (see VIN1 p2) is cancelled upon completion of an
arithmetic operation. He cites the following example to show this: in
BRUN mode keys O div O=CE 1 SUM 01 + 2 SUM 02 + 3 SUM 03 + 4 SUM 04,
Then Recl 01, 01, 03, O4, and find that INV sum applied to Reg 01 and 02, .
and that SUM apllied to Reg 03 and O4. Dallas Egbert (384) adds CLR, sin,
cos, tan *D,MS, *P/R, yX, Xrty and *ifflg to the list of possible error-
condition cancellers.

MEMBERSHIP ADDRESS CHANGES/CORRECTIONS

Make the following changes in your membership lists: 8s: Philip,
Dudley Dbservatory Plaza 7 1202 Troy-Schenectady Rd Latham NY. 25: Wilkins.
45; MD (not MO). 55: 14 Robin Rd Monmouth Jct, NJ 08852. 63: 6302
(not 63). 81: GF (not EW). 176: Box 209 Oceanport, NJ 07757. 255:
3502 Mount View Ave #9 Schofield, WI 54476. 2741 Computer Center (Code
0141) Naval Postgraduate School, Monterey, CA 93940. 277: 5107 Calle
3ziégé5ganta Barbara, CA 93111. U42: 14228 Jefferson Ave #A Hawthorne,

ONE MORE (the last?!) ON SHOOTING STARS

J A Walston (291) gets all the stars in 5 moves (vs Stephen Bepko's
13 as reported in ViNép6), and Michael Brown (128) claims that there are ‘
82 unique 1i-move solutions to regular Shooting Stars.

52-NOTES ViN7pk4

“

ROUTINES

Pending Parenthesis Extractor:s Jared Weinberger (221) has devised
a routine that counts the current number of ('s without disturbing
pending operations. While the routine itself may not find much appli-
cation, it reveals .a new aspect of pending operation/parenthesis behavior.
The routine is: #*LELA STO 99 10 STO 98 #LBL B (1 INV SUM 98 INV #iferr
B CE RCL 99 *rtn, and is run by pressing A. As Jared notes, only pend-
ing ('s are counted (the number of them is returned in Reg 98), not
pending ogerations (which aren*t always separated bx §arentheses).

Thus 5 + 4 X 3 yX 2 ((A shows two ('s, while 5 + 3 yX 2 A chows
none, even though there are 3 pending operations in each case. Apparently
the machine counts ('s separately from the number of pending operations.
If you key ten ('s either consecutively or scattered around other non- =,
CLR or) operations, an error condition is set (SR-56 too), just as if

all the pending registers had been filled. A similar routine works for
the SR-56. Starting c% ct~> 00, key: 9 ST0 1 (1 INV SUM 1 GTO 03. Run
with %Ms RST R/S. Execution halts with an error condition, and the
number displayed prior to execution is lost. The number of current ('s

is in Reg 1. The SR-56 appears to use the same parenthesis counter as
does the SR-52, even though it has 3 fewer pending operations registers.
As these routines suggest, ('s can serve as a loop control counter, thus
freeing a register for other use. |

A Partial Wipeout (52): John Allen (i04) notes that if the sequence |
#*LBL A #ifflg O A *LBL B is executed with flag O set, by a repeat of:

A HLT B (until an unflashed display results), all registers are cleared,
but the program pointer is positioned at the 3rd step ("0"), and the
flag remains set. Jared Weinberzer (221) notes the same results for

‘ veo INV #ifflg O .., with flag O unset. I find that these routines do
not cause the partial wipeout for flags other than 0.

#INV! Crashs Al Roussin (64) notes that program execution of the
sequence: *LBL A X #INV' = HLT causes a crash. But if X *INV' = is
keyed manually, there is no crash, and if this is followed by another =,
an error condition is created. For the SR-56, program execution results
not in a crash, but an error condition, and manual execution squares the
display after the second =. Incidently, although Al refers to *INV' as
pseudo 27, it is LRN-mode creatable (code 17 on an SR-56).

More_On Last_Digits Viewers_(52): The Parsons/Weinberger routine
(V1N6p3.67 appears to work only for numbers greater than or equal to 1.
(both signs must be positive). The Kendall routine seems to work for
any number, and can be automated (doesn't need the manual =) as
follows: starting at step 209: *LBL E STO 99 0 + STO 60 RCL 99 =
Eseudo 31. John Allen (104) reports that his machine (#0154i4l4) displays

th through 13th digits with decapower zeros suppressed. Anyone else?

VALID COMPARISON OF TWO NUMBERS

Even a fair understanding of register behavior (ViNip4 and ViN2pi,2)
may not be sufficient to keep from making false assumptions that lead to
incorrect number comparisons. An important potential hazzard is the
assumption that display subtraction of one number from an identical one
always produces zero. The large number of instances when the results
are zero can be misleading, and the few that aren't can cause serious
problems, especially when a zero test is made on a result that is

expected to be zero but isn't. So long as the 13th place is zero, sub-
. traction produces zero; otherwise a residual results (see ViNipl4 and .
ViN2pl). 1In general, any calculation that results in a decimal approxi-
mation has thc pctential of prcducing a non-zero 13th place. This

52-NOTES ViN7p5

jncludes the trig, log and exponential functions, 1/x, and x! for x GT
18 (*x! on 18 produces an exact result with a 13th place value of 8).
Both display and register arithmetic can produce 13th place non-zero
values. It is important not to confuse the concept of 12 or 13-place
precision with the presence or absence of a non-zero 13th place. For
example, if e/3 is obtained by the sequence: 1 INV 1lnx div 3 =, the
resulting .9060939428166 is correct to only 11 places, yet there is a
non-zero value (6) in the i;th place. Continuing the discussion of his
roblem with 2 yX 3 (ViN6p2) Peter Stark notes that the comparison of

. 000000000001 with exactly 8 by display subtraction can produce either
zero or a residual -1D-12 depending upon operand ordering. The sequence
2 yX 3 - 8 = produces zero, while 8 - 2 yX 3 = produces 1D-12. This is
because Reg 60 truncation to 12 places (ViN2p1,2) has no effect on 8,
but truncates the 1 in 8.000000000001. :

These findings suggest the following programming rules to apply to

sitva.tions requiring number comparisonss If all numbers concerned can
be expected to have 13th place values of zero, display subtractions will
produce desired results, otherwise do one of the following: 1) truncate
each number to less than 13 places (which Sandy Greenfarb (200) notes
can be done by pushing both operands into the pending stack), or 2) per-
form comparison subtractions by register arithmetic.

A CLEVER D/R SWITCH INTERRUPT PROCESSING APPLICATION

Larry Mayhew (145) has written an SR-52 Timer program that makes
effective use of the D/R switch as a means of recording up to 19 time
“splits”. The nominal constants are for larry's machine, and may be
machine and/or temperature dependent.

SR-52 Program: SR-52 Timer - Larry Mayhew (145)

1, Initialize: *fix 4; key nominal constants: 9808.92, press Bj;
9702.39, press C

2. Press CLR, #CMs; switch /R switch to degrees, and key start time
(HH.mmss); press A, *rset

g. Start "clock" by pressing RUN at step 2 start time

. Record first (odd numbered) event time(s) by moving D/R Switch to R;

record second (Ewveri numbered) event time(s) by moving D/R Switch to D

5. Repeat step 4 for up to 19 splits, noting exact clock time of last one

6. Press HLT; key last-event time, press E, see first split (HH.mmss)

7. Press RUN, see next split:; repeat for all splits

8. For new timing exercise, go to step 3

Program Listing

000: 1 SUM 68 90 cos *ifzro 000 RCL 68 #IND STO 69 1 SUM 69

022: 1 SUM 68 #*pi sin *ifzro 022 RCL 68 #IND STO 69 1 SUM 69 *rset
Ob4: *LBL #D* #IND *EXC 68 ~ #IND RCL 69 = +/- div *rtn

059: #LBL *E' + #IND RCL 68 = STO 66 #IND RCL 69 *ifzro 129

078: 1 SUM 68 SUM 69 RCL 66 %*rtn |

089: #LBL E #D.MS STO 64 0 STO 68 1 STO 69 RCL 65 + RCL 00 div RCL 98
115: #D' RCL 99 *E*' #D' RCL 98 *E' GTO 115 RCL 64 - #IND RCL 68 =
138s div RCL 69 = STO 64 0 STO 69 RCL 69 + 1 = X RCL 64 + ®#IND RCL 69 =
1661 1INV #D,MS #*IND STO 69 1 SUM 69 ®*IND RCL 69 INV #*ifzro 150

185s O STO 69 #IND RCL 69 HLT 1 SUM 69 GTO 189

202: *LBL A *D.MS STO 65 HIT *LBL B STO 98 HLT #LBL C STO 99 HLT

§2-NOTES ViN7p6 (end)

‘ I

