. * * %

:**** ***** :** -4 *c**«: }*:* :* * 35***

:*** * 5% 4% : * E * t t** L 2T 3
¥ : ** % t 3 : »* :

Lz) Tl * * Yy ¥ t 3 9693 3 Ly

Volume 2 Number 1 L8/39 January 1977

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

PUZZLING SEQUENCES

It now appears that the topic "Pseudo Behavior" (see ViN5p3) is
not big enough to catch all of what is being discovered in the way of
strange behavior, so I will consider in this space reported combinations
of anything manually, SST, *%*bst, or program executable that produces a
new result. I'll explain what I can, and invite corrections, enhance-
ments, new explanations, etc from the membership at large. Henceforth,
pseudos will be designated with a p followed by the synthetically
creatable 2-digit code (p31 means pseudo 31); keyboard-oreatable instruc-
tions will be designated by the appropriate mnemonic (#INV' is op-code

27).
A *LBL Peculiarity (52): Michael Brown (128) and Dallas Egbert (384)
have found that if in RUN mode keying LRN is preceded by *LBL, the

program step pointer is advanced one step. Expanding this a little
further, I find that *LBL SST LRN advances the pointer 2 steps. It also
appears that the pointer moves one step if the #LBL and the LRN are
separated by keyed numerals (which leave a soft display). However, .

*LBL CLR LRN does not move. the pointer. Then, if the pointer is posi-
tioned at step 223 with *LBL LRN executed manually in RUN MODE, apparently
nothing happens (a second LRN reveals step 223 in LRN mode). This is
probably related to what happens when you execute an instruction at

step 223 with SST: it takes 2 successive LRNs to get into LRN mode.
Incidently, *LBL p31 appears to behave like any other label under program
control.

SINV® Aﬁ%igg;lgxg p21: DPallas has been experimenting with sequences
involving #INV' that make it appéar to behave like the p21 pseudo (2nd).
It should be noted that while p21 as a separate step doesn't always
behave like a "2nd" when merged with an instruction which it shifts, in
the cases Dallas tried, it does: put *INV' at step 223 (99 for SR-56),
then in RUN mode (at step 223 (99)) key SST, and it will take 3 succes-
sive LRNs to get a switch to LRN mode; write beginning at step 000:

*LBL A #INV' p31, press A, press any non-edit button, then backstep to
find the code for the shifted operation of the previously keyed button;
press A (in RUN mode), then SST, and find that it has executed as *bst.
Substitute p21 for *INV' in the above sequences, and the results should
be the same. This observed behavior suggests that program or SST |
execution of either #INV' or p21 can produce a viable detached pending
shift which can affect manually keyed operations in either RUN or LRN
modes. In the 3 LRNs example, the first LRN is executcd as *IND (*f(n)

The SR-52 Users Club is a non~-profit loosely organized group ef SR-52/56 cwners/users
who wish to get more out of their maschines by exchanging ideas. Activity centers

on a monthly newsletter, 52-NOTES edited and published hy Richard C Venderburgh

in Deyton, Ohio. The SR-52 Users Club is neither sponsored nor officially senctioned
by Texes Instruments, Incorporated. Membership is epen to sny interested perscn;
suggested contributions are $6.00 per six issues ($10.00 abrosd).

for SR-56) and it takes 2 more following a step 223 (99) SST to get
into LRN mode (see "A *LBL Peculiarity” above). Speaking of label
peculiarities, unlike #INV', p21 when addressed as a label causes a
reset with error condition.

SST'd SST (52)s In the course of his examining #*INV' behavior,
Dallas found that execution of p71 (SST) by a manually keyed SST causes
the program pointer to skip over (or perhaps execute) the p71 and to
execute the next instruction. This effect appears to hold for any
number of successive p7is. (In RUN mode key: 1.009717171 STO 70 GTO 003
~ SST, and see the trailing 9 that was executed after the program pointer
skipped over (executed?) the 3 p7is)

<001 Dim Display: Chuck Sanford (214) finds that with the SR-52
Plugged into the PC-100, the .0000001 dimming (ViN3pé) does not occur,
but that .001 causes dimming. Thus there appears to be a power supply
dependency for this display phenomenon (which holds for the SR-56 also).

ALPHABETIZED MEMBERSHIP LIST .

Several members with access to general purpose computer systems
- have offered to prepare alphabetized membership lists, and I greatly
appreciate the volunteered help. The most attractive came from Michael
Brown (128) who managed to get an IBM 1130 system to type the output
directly on to mimeo masters. The resulting list is included with
this issue of 52-NOTES that goes to members. Many thanks Mike for
providing a valuable service that minimizes the publishing effort.
Incidently, I will note here that I intend to continue printing 52-NOTES
via my home-based mimeograph until such time as circulation should
become too large to handle. I like to be able to get ephemeral topics .
in on short notice, and will assume that a majority of the membership
prefers topical timeliness to unblemished printing (until I get word
to the contrary). o

TI NOTES

Machine Anomalies: To date, TI has issued one ffaddendum"” for
the SR-56; none for the SR-52. The one for the SR-56 was reportedly
included with the first retailed unit, but apparently Sandy Greenfarb
(200) didn't get one. The jist is:+ m+ or - 0 yX r=mDi2 and m + or -
. Xrty n = rD11 (the xrty part courtesy of Sandy, who discovered both
effects while debugging a practical program).

Games PAC: The Games bonus offered in the December Scientific
American TI advertisement to buyers of new SR-52s will be available
as a regular PAC 15 January 1977. :

PPX-52 Publicationg: The first issue of the PPX-52 Newsletter was
- due to be published the last week of December. The next catalog is
~ due about February.

Machine Exchanges TI now has a number of centers at which users

may exchange defective machines (in warranty) for new ones. Call
Consumer Relations for the one nearest you.

CORRECTIONS
SR-52 Timer Instructions_(ViIN7p6): Step 8 should reads "For new

timing exercise, go to step 2".
Routine B (VIN5p5)s The second *fix 0 is superfluous.

52-NOTES V2Nips

-

REGISTER BEHAVIOR: Part III OVERFLCW ana UNDERFLOW

Herewith the article that I mistakenly said last month would be
in Vin7.

The SR-52 and SR-56 Owner's Manuals teli us that both machines
were designed to be in an error state any time either display or register
arithmetic causes (or tries to cause) the creation of a2 number whose
absclute value is smaller than 1D-99 or larger than 9.999999599D99,
and, for the SR-52 that "... ¥When direct register arithmetic results in
underflow or overflow of that register, the error condition remains until
the contents of that register are changed.” (see page 183 of the SR-52
manual). As it turns out, it is possible to create a number larger than
9.999999999D99 without triggering an erruvr state., and the presence of an
error-state producing overfiow or underflow value in a register does not
of itself cause (or continue to cause) an error state. I the 1ith, 12th,
and i3th places are 499 or less, then there is no overflow, and if
register arithmetic causes an overflow, CLC executed either manually or
under program control appears to turn off the error state. A subsequent
recall of an cut-cf-bounds number would, ofcourse, re-invoke the error
state. And then, it's even poesible for an SR-52 program-memcry register
to contain a sequerice of op-codes which if interpreted as data would
conatitute an overflow or underflow vaiue, For example, in RUN mode
zey: 9.999999999 EE 99 STO 70 9.99 EE 8¢ SUM 70. This should not cause
tne machine to go into an error state. TYet, if RCL 70 is keyed, an
overriow error condition is created. Or, if {SR--52 only) the sequence:
4/~ *PROD 0 0 0 O 0 O is written starting &t step GO0, then RCL 70
creates an underflow error condition. . . ,

In the discussion that follows, 1ot o -xamino roristor tonionts as
they appear in op-code format, using the designators: AxX, CD, ... OP
(see ViNip5), determine the specific characteristics that cause overflow
and underflow, and consider the ccnceptes of “"conditicnal” and “absolute”
cverflow. Key the sequence: 9.999999999 EE 99 STC 70 4.99 EE 89 SUM 70.
Reg 70 chould now contain the number 9.999999994G90G9. Now RCL 70, All
9’5 ghould show, but without error condition. Ncw key: 1 EE €7 Sum 70.
No error condition; but after RCL 70 there is. Steps 000-007 shcould
loo¥x likes 90 09 50 99 99 99 99 99 which represent the numbter
9.99999999500D99, Note that a one was added to the i3th place chenging
positions CD from 99 to 09, and EF from 49 to 50. Register arithmetic
occurred properly, i.e.t 9.999999999499D99y + 1DB7 = 9.95$599999$500D99.
Yet the resulting sum is regarded as toc large when dispiayed, because
of the attempted rounding to ten significani figures. I suggest that
Reg 70 is now conditionally overflowed: 1t contains a nwnber which can
be operated upon normally by register arithmetic. but which when displayed
creates an overflow error state. This is true for all numbers in the
range from 9.999999999500D99 to 9.999969999999099 inciusive. The setting
of the overflow error state during register arithmetic only occurs when
the result would be larger than $.995999999999D99, in which case this
conditional overflow number is left in the register.

Now let's see what happens with underfiow. In RUN mode kcy: 1 EE
+/- 99 STO 70. Steps 000-007 should look like: g4 09 0C 00 00 00 00 10.
Trhis is the smallest number the machine carn hold (putting anytking but
zeros in the 11th, 12th or 13th places (positions E, F, C) only makes
the number larger), Now try to make the number smaller by keying: .1
*PROD 70. No errar condition. Analogous to overfiow, the number left
ir the register is the smallest possible, but unlike overflow, the
register is not "conditionally*” underflcweda; 1 e. bringing it into the

52-NOTES V2Nip?

display does not cause an error condition. Now let's see what happens
when we artificially create a “mumber" that is too small to recognize
as a datum (SR-52 only). Cycle the on-off switch, then in LRN mode at
step 001 key *E'. Now in RUN mode key RCL 70, and see 1D-12. The ‘
machine moved the one at position C 12 positions down to position 0 in
order ta format it acceptably for display (see VIN2p2) and compensated
for this by the D-12. Now, in LRN mode beginning at step 000 key: +/-
#D' 0000 OO, what happened in the preceding example, we might
expect the machine ts interpret this "number” as 1D-111 which is, ofcourse,
too small to display. Indeed, if in RUN mode you RCL 70, you will get
a flashed 1D-99. The smallest artificislly creatable legal number would
look like: 84 09 00 00 00 00 00 01 which transfers as 1D-99. Apparently
artificially created too-small numbers cannot be expanded via register
arithmetic to become "legal”. If 1D-100 (represented in steps 000-007 by
94 09 00 00 00 00 00 01) is multiplied by 10 (via register arithmetic),
the result is 1D-98 (instead of the correct 1D-99) and an error state
created. In fact, register arithmetic performed on any artificially
created underflow number, treats that number as 1D-99 before operating
on it.

Some of the implications of all this are: 1) Either conditionally
or absolutely overflowed registers will respond normally to register
arithmetic, provided absolute overflow does not result, 2) RCL of
either -conditionally or absolutely overflowed registers creates an
error condition, 3) there is no conditional underflow, 4) RCL of an
underflowed register does not create an error condition, and 5) register
contents that are interpreted as less than 1D-99 are treated as 1D-99
during either register arithmetic or when recalled, and an error condition |
is created in either case. ‘

THE MATRIX CHALLENGE (52)

Some of us have found it both challenging and rewarding to write
programs that solve common matrix problems. Much of the challenge lies
in how to determine the best approach, as well as how best to mechanize
the chosen one. I first cenfronted the SR-52 4 X 4 determinant problem
a year ago, and thought that a fairly straight forward FORTRAN algorithm
for a Gaussian Elimination method would work well. I managed to get a
working program to fit on one card (which could also be modified to get
a 5 X 5 determinant) but it wouldn't handle column exchange when zeros
were produced on the diagonal. So I modified the main program so that
it would automatically read a second card that would exchange columns if
required (4 X 4 only). It was great fun working out multiple pointer
manipulations and program overlays, but the program didn't perform nearly
as well as Dix Fulton's straight forward approach (ViN3p4). I haven't
yet come across a program superior to Dix's for just calculating a 4 X &4
determinant, but it is tempting to try to squceze in other matrix opera-
tions all on one card. Using a table lookup scheme to save space (ViN4p2)
Alan Trimble tacked on a solution to 4 simultaneous equaticns that works
well, but appears to be surpassed by Rick Wenger's (235) program (below)
which runs faster and requires fewer steps, mechanized with an extensive
network of subroutines. Incidently, there is a clever flag shortcut in
Rick's program: a call to the undefined D function sets the "flag" and
#jferr provides the test. (It's just too bad if a real error shows upl)

- Por a matrix inverse solution, it appears that no matter what
approach you take, there are a lot of computations involved... more than '
can be fit into a one-card SR-52 program, without clever manipulations/

52-NOTES V2Nipl

tricks. I tried a table lookup optimization (ViNSph4,5,6) approach, but
still couldn't squeeze it all in. However, there is at least one way
that works, as Barbara Osofsky (420) shows in the program that follows
(modified with a few 1/0, throughput, and space-saving enhancements,
including Rick's flag shortcut). A 92-step subroutine does all the
arithmetic; the other 132 steps handle input, output and the regquired
register manipulation to make 20 calls to subroutine *A'. Although
this program was written to be used with the printer, it can be used
without the printer by substituting HLTs for the *prts at steps 082 and
191. Barbara claims to be close to a one-card 5 X 5 inversion... good
luck! Then, ofcourse, it would be nice to combine the determinant,
inverse, and equations solutions all on one card. The four equations
constants can be input following the matrix elements in Barbara's
program, but Cramer's Rule column exchanges would r>~rd to be done
manually. Perhaps someone can combine Rick's and Barbara's programs
into onel

SR-52 Program: &4 Simultaneous Equations Rick Wenger (235)
ser Instructions: Same as for the ViN4p2 progran.

Program Listing
000: #LBL E STO €8 #IND RCL 68 *rta #LBL *A' E X RCL 15 - RCL 14 X #*rtn
023: *LBL #B' E) X { *rtn *LBL*C'E X #ritn %*LBL *D° E - #rtn
040: #LBL #*E' E) + (*rtn #*LBL C F X RCL 13 - RCL 12 X #*rtn
#*LBL B *IND RCL 68 #IND *EXC 69 *¥LBL A #IND E 1 SUM 68 SUM 69 RCL 68 *rtn

085: O STO 69 D (10 #A" 11 #B* Q *#C' 5 #D' 1 #C' 4 #E' & %*#Ar 7 #B' 1 Q7
111: 8 #D° O %#C' Q *E'2 *A' 3 #B' L #C' g #D* 5 #C' 8 #E* 8 C 9 *B'

133, 2 #C' 7 #Dv 3 #C! 6 #*Fv L4 C 5 *B' 3 #C° 10 *D' 2 #Ct 11 #E*' 0 C

157: 1 ®#B* 6 #C' 11 #D' 7 #C' 10 #*E* 0 = *iferr 197 div RCL 66 = HLT

i8i: 1 +/- *PROD 66 16 E B B B B GT0O 090 STO 66 CE GTO 186

SR-52 Program: U4 X 4 Determinant and Jnverse Barbara Osofsky (420)/Ed

. User Instructions

1. Initialize with CLR

2. Key first element, press E; see 1 displayed, and printed confirmation

3. Key ith element, press E or RUM; see i displayed and printed confir-
mation. Repeat for i = 2, 3, .., 16 with row-wise catenation

4. Press A, and get printed the determinant, followed by the 16 inverse
elements grouped by rows. Program ends with -1 displayed. For a
new problrm, go to step 1.

Program Listing
000: *LBL *A' RCL 05 X (RCL 10 X RCL 15 - RCL 14 X RCL 11) + RCL 06 X
028: (RCL 11"X RCL 13 - RCL 15 X RCL 09) + RCL 07 X (RCL 09 X RCL 14 -
059: RCL 13 I RCL 10 = div RCL 99 +/- STO 99 +/- = ®*ifflg 0 083 #prt
083: X RCL 00 = SUM 69 #*rtn *LBL C + 3 STO 98 = STO 68 *IND RCL 98
10?= *IND *EXC 68 *IND STO 98 4 #iferr 121 1 +/- SUM 48 SUM S8 RCL 98
131+ *ifpos 103 CE *rtn *LBL B *A' 4 C *#A' 8 C *A' 12 C *A' 12 C 8 C
155+ 4 C #rtn *LBL *D*' #pap D + 1 +/- *PROD 99 12 GTO 096 *LBL A *pap
%gg: :g?f%gzo*é'sg0392D?Lg E INV**stflg 0 RCL 696*prt *pap STO 99 B 1

rtn *LBL E %

218: RCL 69 HLT GTO E HD STO 69 Fprt 1 SUM 69

52-NOTES V2Nip5

FORUM

PC-100_Hardware Problems: Gerald Dormelly (203) has had several
printer problems, and wonders what is the best way to get satisfaction.
Since it now appears that many of the early PC-100s were poorly designed
or fabricated, my advice is to keep exchanging units until you get a good
one (Gerald and I are already on our second replacements). Just make
sure you find all the faults before your warranty expires! Gerald sug-
gests that it might be helpful to the membership to tally incidences of
hardware problems. Let me know yours, and I'll pass the info along in
a future newsletter.

Duplicate PPX-52_ Programs: Barbara Osofsky (420) brings up the
matter of PPX-52 possibly rejecting a program because it produces the
same results as one already in the library, even though it may be
superior in some way. She suggests that Club members could share their
PPX-52-re jected but superior programs. This looks like a good idea, and
I invite members who wish to participate to send me an abstract of a
re jected superior program, the ways it is superior to a corresponding
PPX-52 program, and to be willing to provide ccpies to members who send
a SASE and money (state how much you require) to cover copying costs.

I will publish such declarations in future newsletters.

SR-52 Pause Function: Don Williams (29) and Shuichi Takahashi (422)
. would like to know if anyone has been able to create an SR-56-type pause
function for the SR-52.

B0OK REVIEW: Applied Mathematical Physics with Programmable Pocket

. Calculators Robert M Eisberg (McGraw-Hill 1976, 176 pages)

The capabilities and availability of the SR-56 and HP-25 class of
rersonal programmables led physics professor Eisberg to consider a new
approach to introducing selected topics in physics at the college level.
Ey mechanizing elementary numerical solutions to differentiation, inte-
gration, and differential equations for both the SR-56 and HP-25,
Eisberg introduces physics problems to the novice which would be either
too difficult or just plain unsolvable using anaiytic techniques. Topics
range over linear and central-force motion with friction taken into account
nechanical and quantum theory oscillators with resonance, damping, and
coupling; and random processes. The programs appear to work, although
nost could be readily optimized for more efficient I/0. And since most
output is destined to be plotted, incorporation of the PC-100 printer
with the SR-56 programs would be a significant enhancement. This looks
like a good book for layman personal programmable users as well as physics
instructors and students.

CORRECTION: V2Nip4 (bottom)
The sequence: 1 EE +/- 99 STO 70 .1 #*PROD 70 does create an error
condition; subsequent RCL 70 does not.

V"MBERSHIP ADDRESS CHANGE .)
Make the following change to your membership lists #281: #18 (not

#17).

52-NOTES V2Nip6 (end)

.
?

