C e

 atat R L . ,E S grnns ziﬁi*
Fuwn - *** P . ¥ § % b-gil 4***3
****t - " T Teuns R T T T

Volume 2 Number 3 48/39 March 1977

Newsletter of the SR-52 Users CIub
published at
9459 Taylorsville Road
. “Dayton, OH 45424

o - - - . -
------ ------------- - e w= e - -"‘bp-b-- - les e > e»- e

RANDOM NUMBERS . S

“Gerald Donnelly (203) brings up the toplc of random numbers, and. -
how best to generate them for particular appllcatlons I should note
at the onset that mathematicians are not even in agreement on a defini-
tion, let alone how best to generate them! However, for games applica-
tions with the SR—52/56 machines perhaps we can agree on the following
admittedly fuzzy statement: -The "best" random number generator will
gelect numbers one at a time from a given set, producing a sequence
whose ordering and distribution characteristics most closely resemble
those produced by successive spins of an .appropriately marked, unbiased
roulette wheel. There ‘are two general mechanization approaches: what
I will term open, and ctlosed. Open requires manual intervention via
program interrupt; c¢losed is self-contained, and produces sequences
which are predetermined by the value of an initializing "seed"” number.’
The open approach comes the closest to the stated concept of best, but.
imposes a chore on the user; the closed approach produces predlctableA
gsequences, but is automatic.- The closed approach is used most often, -
and is generally satisfactory, as most users find it either distastefully
.ungentlepersonly or too much bother (or both) to determine in. advance
each predlctable sequence.' But perhaps the open approach déserves some
attention, since it is easily mechanized in relatively few steps.

If random numbers in, say, the range 1- 6 do not need to be hidden
from the user, something along the lines ofs #*LBLAS=1=U4=06-=
3 =.2 = GTO A will work quite well: press A, then HLT. The longer the
tlme between pressing ‘A and HLT, the more "random"” the selection is
likely to be. If the numbers need to be hidden: #*LBL A RCL 05 *EXC 03
*#EXC 06 ¥EXC 01 -~*EXC- ‘04 #EXC 02 STO 05 #pi sin *ifzro A 0 HLT might . .
do, and is run with prestored values in Reg 01-06 by repeating: press
A and switch from radian to degrees at an arbitrary time. A main ‘
program would use the contents of any one of Reg 01-06.

The closed approach poses two problems: how to keep generated
numbers within a desired range, and how to get a "good"” distribution, .
all in a minimum number of steps. The severity of the range problem - -
depends on the required range. If the only restriction is that genera-
ted numbers fall between O and 1, the range problem is trivial. But:

a requirement, say, to produce -a random ordering of the first ten primes
might take such a chunk of memory space and/or execution time as to .
defy practical implementation. But let's look at something in between.
As a "working” number, pi is a handy 13-digit, middle-magnitude, posi-
tive real whose digit values form a "randomly” distributed string of

The SR-52 Users Club is e non-profit loosoly organized group of BR-52/56 ownors/usors
who wish to got mero out of thoir machinos by oxchsnging idoss. Activity contcrs

on e monthly nowslottor, 52-NOTES oditod and publishod By Richsrd C Vendorburgh

in Dayton, Ohio. Tho SR-52 Usors Club is noithor sponsorod nor officislly senctionod
by Toxas Instrumonts, Incorporstod. Mcmborship is opon to eny intorcstod poreon:
$6.00 includecs six futurc issucs of 52-NOTES; back issucs start Junc 1976 @ §1.U€ ca.

e

8 of the 10 numerals, and every closed random number generator I've

geen for the personal programmables uses it in one way or another. A '
general approach is to combine pi with a seed by some succession of
arithmetic operations, replace the seed with the fractional part of

the result, and convert the most significant digit(s) of this result
into an integer which may need to be scaled, depending upon range
requirements. Each successive generation combines pi with the previously
generated seed. Although I've seen square roots and fifth powers
applied, & simple multiplication of pi by the seed seems to be quite
satisfactory. As an example, let's look at Routine D* of Alan Charbon-
neau's Yahtzee program (V2N2p5). The requirement is to randomly select
one of the numerals 1-6 each time the routine is called. The fractional
part of the seed-times-pi product is saved, and then multiplied by

the scaling factor: 5.5 which guarantees a real roundable to an integer
in the 0-5 range. The + 1 offsets the range to 1-6. Although this
sczling method works (one of my revisions to Alan's program), Steve
Marum %188) points out that there is a bias favoring the numerals 2-6,
His revisiont 022: RCL 98 X 6 + .5 = ... removes the bias (caution:
when making this substitution into Alan's program, either include a
neutral spacer, or change all absolute addresses and reposition the
unrelocatable code at siteps 208-223).

Rather than go on with other requirements and approaches now, I'll
wait for input from the membership. Send me your prize random number
generators, hard-to-meet requirements, pedagogical arguments, etc and
we'll resume discussion in a future issue of 52-NOTES.

A SUM OF THE DIGITS CHALLENGE ‘
Jared Weinberger (221) has been experimenting with various ,

approaches to summing the digits of a number. For the SR-52 the seq-

uence: *#*LBL A (EE INV #fix EE 00 - INV #D.MS INV #D.MS ¥ fix 0 EE SUM

69) INV #ifzro A *EXC 69 #rtn is Jared's fastest, while: #*LBL B X 1

SUM 62 - EE div EE 00 = INV *#ifzro B *EXC 69 *rtn is shorter but slower.

Both require a one-time zeroing of Reg 69. Upon call, the displayed

number's digits are summed, and the sum returned. For the SR-56,

advantage can be taken of the Int function, and the routine starting

at 00: (EE INV *#fix EE 00 - *Int SUM 1) #x=t 16 RST ®*EXC 1 *rtn is

both shorter and faster than either of the SR-52 ones. The routine:

X1 SUM1 - EE div EE 00 = #x=t 15 RST *EXC 1 #*rtn is one step shorter,

but takes longer to run. To run these SR-56 routines, zero Reg 1 once

alonz with the t register, then RST R/S with the number whose digits

are to be summed in the display. Can anyone bzat 21 SE-52 steps or 18

SR-56 steps?

PPX-52 GEMS AND REJECTS (52)

Stan Wagon (456) notes that program #390016: Extra Precision
Factoxials by one Greg Evans "... is interesting and might prove useful
to anyone conterplating using double precision in other contexts.”

E. S. (Mack) Maloney (246) has a great circle navigation program
rejected by TI as a duplicate, but which calculates an initial course
from the point of departure (which #949025 reportedly does not). Send
Mack a SASE and 25¢ if you would like a copy of his program.

52-NOTES V2N3p2

BOOK REVIEW
STATISTICS FOR THE SR-52: KEYBOARD DATA, 188 pages $10.00;

STATISTICS FOR THE SR-52: CARD DATA, 100 pages $11.00; and STATISTICS
FOR THE SR-56, 79 pages $9.30; all by C Donaldson Ellis, published 1977
by Wilmardon Publishing Box 461 Storrs, CT 06268.

All three volumes are printéd in a pica typewriter font, one side
of 84 x 11 paper, with direct copy of PC-100 printer listings opposite
manually generated mnemonics for program listings. Each program begins
with a brief description of what it does (assuming user familiarity
with statistics usage), along with special requirements and limitations.,
User instructions are contained in a step-numbered Procedure section.
This is followed by a table of register contents, and the program list-
ing. Applicable formulas and algorithms are noted as being found in
one or more of five references, but are not printed in the text; there
are no sample problems. All programs are written for use with the
PCiioo. with notes covering required modifications for SR-52/56 use
only.

The SR-52 keyboard manual covers 54 statistics programs, some
requiring more than 224 steps. Input data are entered as required from
the keyboard. The card manual arranges half of the keyboard programs
to allow for data storage and retrieval via mag cards. Data packing and
unpacking routines are given, but actual card storage is by program
step only (no mention is made of direct storage to/from program regis-
ters. Register tables show data assignments to Reg 98, 99, 00, ... 19.
I will not comment on the degree to which programs operate satisfac-
torily or have been optimized, exceﬁt to note that a 2 X 2/ 3 X 3
matrix inversion program requires 445 steps, and one titled "Four-way
ANOVA--Unweighted Means" requires 1736 steps (8 cards).

The SR-56 manual follows along the same lines, covering 40 programs,
some of which require more than 100 steps. The longest program is
"Mixed ANOVA i Within and 1 Between" which requires 242 steps (3
programs to key in). ,

It would appear that these manuals would be the most useful to
statisticians who have access to SR-52/56 machines, but who don't know
how (or don't care) to program them. Users are invited to communicate
with the author via the publisher.

A SUBTLE DANGER IN USING iferr AS A FILAG (52)

Barbara Osofsky (420) notes a potential danger in using an undefined
letter function to set an error condition flag in programs where
program gtorage registers are used for data. In my version of her 5X5
program (V2N2p3,4) if any of the first 3 data entries begin with the
sequences 1346 or contain this sequence in the following patterns:
XX1346, XXXX1346, or XXXXXX1346, then LBL C becomes defined (see ViINipl)
and the user call to C would cause uyndesired execution of the code
(or data) following the LBL C. While the probability is small that
LBL C woul@ be unintentionally defined, the potential is there. As an
example of a worst (albeit improbable) case, if the first 2 elements
of a 5X5 matrix ares 8.594011346 and -1.234567895D64 respectively,
when C is pressed, there is total wipeout! (see ViN2p2). As it turns
out, Barbara was able to accomplish the conditional branch with a real
flag in a recent version of her program which I may publish later. 1In
the meantime, users of the V2N2 5X5 program who expect to input matrix
elements containing more than 3 digits may wish to make the following

52-NOTES V2N3p3

changes: re-write, beginning at step 192: STO 69 + = D HLT, (The
HLT at step 199 may be either left alone, or deleted). Re-write step ‘
6 of the user instructions to read:s 6. Key 9n, press RUN, then E; jth
column printed, j=2,3,4,5, see 1 displayed; repeat for n=6,7,8,9.
Re-write note 3 to reads 3. At step 6, following the RUN, 5 is
flashed, '

It should be noted that any time program registers are used for
data the possibility of unintentional labeling exists. However, if
such registers are chosen at the high end (... 95, 96, 97) duplicate
labels pose no problem since the machine always searches for labels
starting at step 000.

A UTILITY PROGRAM FOR FRACTURED DIGITS (52)

In modern programming terminology, a utility program is one which
aids the programmer in developing other programs. Routine A in ViN5p5
(top) is a short special purpose utility routine that helps the user
synthesize look-up tables which become parts of other programs. As
noted, once a main program has been written, Routine A is no longer
needed, and it can be shelved until such time as it might be used to
help in writing another program. A while back I attempted to arrive
at the "best"” display format for a game program I was working on by
trying -out various sequences of fractured digits mixed in with numer-
ical results. I soon realized that it would help to have a fractured
digits synthesizer program that could produce specified patterns in
the SR-52 display, so they could be seen and judged as they actually
appear. In the following program, the user specifies the character he
wishes to appear at each of the 14 display positions (within the con-
straints described in VIN2). O produces the numeral 8 (which arbitrar- .
ily represents any desired numeral), 2 produces the ® symbol, 3 pro-
duces a blank, 4 a ' symbol, 5 a © symbol, and 6 a - symbol. Inci-
dently, a 6 for position 11 followed by 3s for positions g2 and 13 will
produce a - at position 11 and blanks at positions 12 and 13 (contrary
to a statement .in. VIN2p5). As each position is processed, the
number left in the display indicates the next position to be specified.

SR-52 Utility Program: Display Variations Synthesizer =~ Ed

User Instructions: -
1. Key position 0 code, press A; see 1 displayed
2. Key ith position code, press RUN; see i+l displayed
Repeat for i=1,2,...13
. Press =, see synthesized display
. To synthesize a new display, press CLR and go to step 1

Program Listings , -

000: *LBL B = SUM 98 #LBL C 1°SUM 18 RCL 18 INV EE HLT #*rtn *LBL A INV
0223 *#stflg O INV #gtflg 1 - 3 = #*#ifzro 036 *stflg 0 1.11 STO 98

O43: RCL 92 STO 19 1 STO 18 HLT div 1000 B div 1 EE 4 B div 1 EE 5
069s B divi1 EE 6 Bdivi1 EE7? Bdivi1 EES8 Bdiv 1 EE 9 B div 1 EE 10
095: B div 1 EE 11 B=C - 3 = #*ifzro 113 #stflg 1 C div 1 EE 12 B X
121+ 10 = STO 18 10 yX RCL 18= EE *fix0 *PROD 98 1 EE 88 INV *ifflg 1
147: 151 *#1/x INV #ifflg O 158 +/- ®PROD 19 RCL 98 + STO 60 RCL 19
171: INV EE #fix O HLT O #ifpos #2°' #2' #2' #2' #2! A

52-NOTES V2N3pk

. AN AOS ADVANTAGE FOR A PROBLEM IN LOGIC (52) ,-

As most of us know, AOS vs RPN arguments rarely end in conclusive
victories for either side. But here is one application where AOS does
appear to have a clear advantage. ILogician Stan Wagon (456) found
that the SR-52's nested parentheses could be made to order hierarchies
in certain types of logical statements. In a branch of mathematical
logic sometimes referred to as propositional calculus, 2-state variables
which assume values of either true or false are operated on by the 5
logical operators: NOT, AND, OR, IF...THEN, and IF AND ONLY TF., All
but NOT are "connectives"”, that is, they link two variables or paired
parenthetically grouped variables. A string of variables, logical
operators, and parentheses forms a logical statement or sentence. For
each possible configuration of variable states, the entire statement
is either true or false, and a tabulation of all such configurations is
known as a Truth Table. (Sece Chapter 1 of the Boolean Algebra and
Switching Circuits Schaum's Outline if you are new to the subject).

Given the elementary truth tables: IF... IF AND
. NoT | AND | OR | THEN| ONLY IF
Al VA A_B] A&B AvB|{A>B| AeB
T, F_| T T T T T T
I IIF F I | F 1 F
FIT F T T F
FI! F F F T T

. Stan's Truth Tables program that follows accepts a statement of n
variables (0 LT n LT 10) and up to 27 characters in length, and prints

(or displays) the gtatement's truth or falsity for all 2N possible ways
to assign truth values to the n variables. Each statement is written
in LRN mode as the body of Routine E, and must be contained within a
parenthesis pair, & of the 5 logical operators are assigned to letter-
functions gs follows: A'=0R, B'=N0OT, C'=IF...THEN, D'=IF AND ONLY IF;
the "times" operator X=AND. Parentheses should be used extravegantly
(when in doubt, use them). The 5 letter functions A, B, ... E
correspond to the first 5 variables, For up to 4 more:s RCL 06, RCL 07,
RCL 08, RCL 09 would be written in Routine E to represent the additional
variables. In order to adopt the output convention that O=false and
1=true, Stan needed a way to vary the number of displayved digits, and
worked out a dynamic-code-change method. A skeleton block of 8 instruc-
tions (steps 184-191) held permanently in Reg 93 is modified during
program execution to supply the proper value for n in "fix n", then
put into Reg 91, which supplies steps 168-17?. A logical statement (S)
that might be written out as: ((a&b)w(ca7b)) (avb) would be written
in Routine E'ast *LBL*E' (((A X B) *A' (C *C* (*#B'B))) *C' (A *A' B))
rtn. '

Each displayed line of the truth table shows the truth or falsity
of the statement as an integer 1 or 0. Variable truths or falsities
are shown to the right of the decimal. In the above example, the
tenths place indicates the truth or falsity of variable a, the mndredths
Place b, and the thousandths c. The resulting truth tables are dis-

. played ass 1.111, 1.110, 1.101, 1.100, 1.011, 1.010, 0.001, and 0.000,
and translate to: o

52-NOTES V2N3p5

A printer version of this program would require error
test code to terminate execution, in addition to replacement
of the HLT at step 179 with a *prt. However, the user could .
save the extra steps by halting execution manually, and
ignoring printout past the ?.
Corrections to the preceding page: +two references to Routine
E should have been to Routine E'. An IF...THEN arrow is
missing in the written sample statement; the Routine E' code
is correct.

L

gyt 3333
"!1"!.!!-3‘—3"'21*11‘6\-3
Ham 333
Hg 33333

SR-52 Program: Truth Tables Stan Wagon (456)

User Instructions:
1. Write the statement at label E': GTO *E' LRN (statement) *rin
LRN
2. Key number (n) of variables O LT n LT 10, press GTO GTO
3. Fress RUN, see ith line of Truth Table
Repeat for i=1,2,...20; the 27th line is flashed.
For new statement, go to step 1.

Program Listing:

000: *#LBL A RCL 01 #*rtn #LBL B RCL 02 #rtn #1LBL C RCL 03 *rtn

018: #LBL *A' + (STO + 1) X %*rtn *LBL #*B' 1 + %*rtn *LBL #C' + 1 +

038: (STO - 1) X %*rtn *LBL *D' + 1 + *rtn #*LBL D RCL O4 *rtn

057s #LBL E RCL 05 *rtn #*LBL GTO #CMs STO 18 +/- EE 70 + RCL 93 =

078: STO 91 2 yX RCL 18 = EE STO 19 #fix 8 1 INV SUM 19 RCL 18 #*EXC 00

104s STO 17 BCL 19 STO 16 *1/x 1 SUM 17 (RCL 16 - 2 yX (RCL 00 - 1))

133s EE *ifpos 143 0 GTO 154 STO 16 RCL 17 +/- INV #log + 1 #IND STO 17

158 #dsz 114 (*E' div 2 - INV .
176s 2 +/- = HLT GTO 091 EE #fix O *D.MS *fix 0) X *LBL *E' .

TI NOTES

SR-52 and SR-52A Trouble_Shooting Cuide: reported by Marshall
Williams (227) and later confirmed by TI as available to the public.
Send $11.00 plus local sales tax to TI Box 53 Lubbock, TX 79408. This
manual reportedly contains schematics and I/0 interface information.

FC-100_Modifications: to upgrade to PC~100A reported by T S Cox
(9) and later confirmed by TI as a possibility. If implemented, TI
would modify PC-100s for an as yet to be determined fee to accomodate
"other" machines, but such modifications would not include the battery

charger feature of the PC-100A.
ROUTINES

displays a data counter. The usual approach is along the lines of:
#LBL A *IND STO 69 1 SUM 69 RCL 69 HLT. Ed replaces the RCL 69 with +,
which works just as well, provided processing begins with CLR or =.
A Short Integer Test:s Stan Wagon (456) suggests the sequence:
ees = ®D,MS = #ifzro ... as a quick test to determine whether or not a
number is an integer. However, one limitation is that the number must
be less than 13 digits for older machines (see V2N2p6). A comparable
SR-56 sequence would bet ,.. - #*INT = #x=t, with a zeroed t register. ‘

52-NOTES V2N3p6 (end)

