333633 #3643 3*- %* 3

¥ X 5, % E « **g** §**** whe

g*** ¥* o3k 3698 ¥* % % g %* 33 L L 2)
* %* L #* % % * g
- £ vk X ¥ i i *

333 363696 363¢ I* %* 3363 * 36359639 %34

Volume 2 Number 8 48/39 August 1977

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

L I R R e T R R - T I o

ADVANCED PROGRAMMING TECHNIQUES III: SORTING AND SEARCHING
Donald Knuth has devoted a whole volume of his classic "The Art

of Computer Programming" texts (Vol 3 Addison-Wesley 1975) to this
subject, and I'm not about to try to out-do him! But I do think that
many members will profit from being introduced to some of the key
concepts, the understanding of which can be useful tools in the gener-
ation of many types of non-trivial programs. Although Prof Knuth's
text is probably too technical for most non-computer professionals to

rasp, fortunately he has written an excellent article on Algorithms

Scientific American April 1977, p63-80) which very nicely discusses
many of the important sorting and searching topics at the layman level.
Peruse Knuth's article carefully from beginning to end, try mechaniz-
ing the algorithms A-F on your PPC, then try running the SR-52 program
that follows, and see if/how it implements Algorithms E and F. If
you think your program for these algorithms is better (or it applies
to a different machine) send it in. Your questions and comments on
Knuth's article will form a basis for continuing discussion.

SR~52 Program: Ordered Hashing (Knuth Algorithms E & F) Ed

User Instructions: To Load Hash Table:
1. Initialize: Press CLR
2. Enter word to be loaded: Key letters via Rausch Overlay
(VIN3p2), see coded word displayed.
3. Following each completed word, press RUN, see last table-
maneuvered word (code).
4, For next word, go to step 1. 32 words max; 5 letters max each.
To Search Hash Table:
1. Initialize: Press CLR
2. Enter word to be searched for: Key letters via Rausch Qverlay,
see coded word displayed.
3. Initiate search: Press A; if found, see address (88-119);
else see input coded word returned.

Program Listing: ;
000: #LBL #C' RCL 68 #*rtn *LBL #B' STO 69 #rtn *LBL *D' RCL 69 *rtn
018: ¥IBL *E' 1 INV SUM 69 #D' - 87 = INV *rtn *LBL D + 9 *LBL C + 9
Q¥Ls " LBL B SUM 69 + *C! X 100 = STQ 68 HLT E *LBL *1' ¥IND #D*

£t #ifgpo #27 - #C' = #ifpog #3' *C' ¥IND *EXC 69 STO 68 *LBL *3°
oggz ¥E! #ifzro #1' 119 *B' GTQ ¥1' *LBL *2' *C' *IND *B' HLT *LBL E
090: *D' div 32 - INV *D.MS_INV *D,MS #fix Q *D,MS INV *fix = X 32 +
115s 87 = *D,MS *BY #*prtn *LBL A E *LBL *4V #c1"_ %IND #D' = ifgro *D'
133s *ifpog *C' #E' #ifgro *4' 119 #B' GTO #L*

SRR W de wm e am am me AR e W em e Em e eE Ge am we B MR e m WY M me e mw e e s e me me

Tho SR~52 Ugers Club is a non-profit Looscly organisod group of TI FPC ownors/usars
who wish to got morc out of thoir machincs by cxchanging idoas. Activity contors

on a monthly ncwslottor, 52-NOTES oditod and publishod by Richard C Vandorburgh

in Dayton, Ohio, Thc SR-52 Uscrg Club is noithor sponsorod nor officially sanctionad
by Toxas Instrumonts, Inc. Momborship is opon to any intorostod porson: $6.00
includos six futuro igsucs of 52-NOTES; back issucs start Junc 1976 @ $1.00 oach.

CORRECTION TO PROGRAM ON PRECEDING PAGE: Max number of words is 31.

58/59 TIPS

Abgolute Addressings A label search can take as long as 2 sgeconds
(1 second for the 58) for labels near the bottom of program memory, so
absolute addressing can often speed execution significantly. It also
saves a program step for a branch point to which there is only one
branch-to source. However, a single absolute subroutine call to a
specified step breaks even with the user-defined-key approach. But
since it is handier +to call a subroutine from the keyboard with a user
defined key than with a sequence of the forms: SBR nnn, the added
delay may be preferable. However, the ML-02 program shows how to speed
things up if you have a few steps to spare by placing called labels
near the top of memory, and following some with GTO nnn, where step
nnn is the first step of the desired code near the bottom of memory.
When converting a program from relative to absolute addressing, keep in
mind that each absolute address takes 2 steps: +the first holds the MSD
and the second the 2 ISDs., Start from the top of program memory,
inserting an extra step at each label reference, and deleting each
label (2 steps), noting the resulting absolute address. Then go back
and overwrite the 2-step address references with the appropriate
absolute addresses, making sure they are properly merged.

OP 18 and 19: These two control operations perform the SR-52 iferr
function when used in conjunction with flag 7, and are described briefly
in the owner's manual (V-29 and V-67). However, the manual does not
point out that Op 18 or 19 must be executed each time flag 7 is to be
set according to the machine's error state. Thus it appears that each
error test should take the forms *Op 19 *ifflg 7 n ... #Lbl n INV
*stflg 7 CE ..., and each no-error test the form: *0p 18 *ifflg 7 n
CE ...*Lbl n INV #*stflg 7 ..., both sequences obviously more cumbersome
than the analogous SR-52 sequences: %#iferr n... ¥LBL n CE... and INV
#jferr n CE ... *LBL n Incidently, the 58/59 sequences INV #0p
19 says that if an error condition exists, reset flag 7, and the
sequencet: INV #0p 18 says that if no error condition exists, reset flag
7. (These appear to be the only 2 control operations affected by an
INV prefix). ‘

More_on Dszs The Dsz function can be made to work directly as well
as indirectly (%2N7p6) on any addressable register., All that is
required is to form a merged 2-digit address by some artificial means:
find a key function with the desired op code, or first key a STO, RCL,
sum.., followed by the 2~digit recgister address, then replace the STO...
with Dsz. For Dsz of a 2-digit register and transfer to an absolute
address, first key something like: RCL ab STO cd, where ab is the reg-
ister to be Dsz'd, and cd the LSDs of the absolute address, then
replace the STO with the MSD of the absolute address, and the RCL with
Dsz. It appears to have been a design oversight not to have made the
Dsz expect to be followed by 2 digits for merging, like the other reg-
ister commands. Incidently, the flag and fix instructions can also be
made to work with 2-digit operands. But there really are only ten flags
or display positions and the following occur: #stflg mn sets flag n,
#3tflg #Ind mn sets the flag identified by the integer LSD of the con-
tents of Reg mn; #fix mn executes as fix n, and #fix #Ind mn fixes the
display in accordance with the integer LSD of the contents of Reg mn.

52~NOTES V2N8p2

Getting the Correct Memory Partioning: Be sure to mark the
prevailing partitioning on a recorded mag card, especially if it is
other than the default configuration (479.59) since successful card
read and proper execution require correct partitioning, and you can't
get the card itself to partition the machine. Incidently, correct
partitioning for the V2Nép3 program is 319.79; 239.89 for the V2N7p2
one.

Neutralizing a Label: If a Lbl instruction in a program is
preceded by an instruction that expects to be followed by a 2-digit
register address or a 3-digit program address, the Lbl (code 76) is
treated as Reg 76 or step X76 and the label search mechanism will
pass it by. While such a situation is not likely to arise intention-
ally, hasty editing can produce it. This happened to me once, and at
first I thought the machine was at fault, since it wouldn't find a
“defined" label whose code I could "verify*. In the examples: RCL
¥Lbl A ..., and *Dsz 6 4 *Ibl B ..., A and B are effectively undefined,
since the machine sees these ast+ RCL 76 A ..., and Dsz 6 476 B
respectively.

Qut-of-Range_TIndirect Addressing: Unlike the SR-52, the new
machines will not recognize the appropriate LSDs of address pointers
that are too large. However, they will operate on the in-range
(including partitioning constraints) integer part of a real for
indirect addressing. For example, the real: 12.34 can properly point
to Reg 12, 123.4 does not point to any register; and 123.45 can point
to step 123, while 1234.5 does not point to any step. All negative
reals are treated as zero when used as address pointers.

Neutral Error Producer: For n GT 39, Op n produces a non-
halting error condition without disturbing the display.

Pause Loop_During Error Conditions A pause loop such as: #Lbl
A *Pause GTO A executing while an error condition prevails doesn't
halt normally with a manual R/S. However, the following seems to
work: repeatedly press R/S until the pause changes to a flashed
display, then press CE or CLR (a flashed display oscillates faster
than the shortest pause loop, and display illumination is dimmer).
But if there is any chance of an error condition being set, it is
probably best to put a CE before the pause in a pause loop.

FRIENDLY COMPETITION ,

Hal Brown (HP-65 Users Club member #362) has written an HP-67
5 X 5 matrix program (published in 65-NOTES V4N5p15,16) in an effort
to meet the challenge of Barbara Osofsky's SR-52/PC-100 program
(V2N5p5). Hal has done well to solve the limited-register problem
(the 25 matrix elements take all but one of the addressable registers)
and his program appears to work for a few sample problems. It runs
fast (gets a 5 X 5 determinant and inverse in less than 3 minutes)
and retains the inverse elements in memory, but requires restarts
with manually rearranged rows or columns in some cases to get cor-
rect inverses, and ofcourse does not print (perhaps someone will
write an HP-97 version). I invite members with appropriate matrix
algebra expertise and access to an HP-67 to examine Hal's program;
send me your findings. Send a SASE to Richard Nelson (2) for a copy,
and make the following key entry corrections: step 144 should read
RCL I, and step 180 should read RCL (i). 1In both cases, the key
codes are correct. The last part of user instruction 2 should say
5X 5 (not 4 X 4),

52-NOTES V2N8p3

FRIENDLY COMPETITION (con)

So far as I know, no HP-67 user has yet responded to the challenge
of Karl Hoppe's 70 Digit Square program (V2N5p5,6). The HP-65 Users Club
has proposed 3 HP-25 programs as SR-56 challengers: Gamma Function,
Histogram Generator, and 2-way Base Comversion. Write Richard Nelson (2)
with a SASE for copies. dJohn Ball (HP-65 member 1345, at Oak Hill Road
Harvard, MA O1451) has an HP-25 satellite predictor program that he
can’t get to fit on an SR-56. Anyone care to try?

GENERAL PURPOSE PLOTTER (59/PC-100A)

While Op 7 makes it easy to position an asterisk in accordance
with the magnitude of the number in the display, no other symbols may
be substituted, and no other information can be printed on the same line.
The program that follows provides for a choice of any of the 64 char-
acters for plot points, and prints each i along the “abscissa" corres-
ponding to the plotted Yi, where Yi=f(Xi). In much the sume way as
the SR-52 plotter program works (ViN3p2), a first pass is made through
a user-defined f(xg to determine YMAX and YMIN. But durimg this process
f(x) evaluations that produce errors are detected, and error messages
printed identifying which values of x cause f(x) to produce errors.
The plot is scaled to put YMAX at the *"top" and YMIN at the "bottom"”,
and ? symbols are plotted where £(x) errors are produced. i-numbers
are suppressed when they interfere with plot symbols. Steps 036 and
037 contain the plot-symbol code, which may be changed as desired.
I've found that the decimal point (code 40) is especially effective.,

Since there is plenty of TI-59 memory to handle this program, I
worked more toward optimizing execution speed than toward reducing
steps. So 58 users may find it possible to eliminate enough steps to
get this program to fit on their machines. The first 20 steps mech-
anize a vectored processing approach (ViN4p3) to speed up conversion
of the display value to a properly positioned gymbol code in the print
buffer, and the setting of the i-number-suppress flag. Fortunately,
the 34 of Op 34 doesn't do any harm when branched to directly (it jJjust
wastes a little time taking the square root of L), Cetting the printed
i*s to increment properly required a bit of counter manipulation
(because of the way the numerals are coded); having more than one Dsz
register helped. It's too bad the numeral symbols weren't coded with
their own decimal values (00-09). The Lbl E R/S at the end of the
main program serves only as a quick way for the user to get to the
f(x) starting step. His f(x) subroutine is called in the main program
via SBR 374. All code above step 374 is absolute, and any editing
must take this into account. I looked into the possibility of using
MI-07 when f(x) is a polynomial, but there ig no way to suppress the
Prt at step 076 (the Prt at step 035 can be dodged by calling routine
C via SBR 036). I invite refinements and/or better approaches from
the membership; simultaneous plotting of 2 or more fungtions, with
different symbols could be a significant enhancement. However, the
inclusion of too many goodies could slow execution unacceptably.

On the subject of printer graphics, I should update a statement
made in V2N5p2 to the effect that the HP-97 cannot print fractured
digits. As revealed in recent issues of 65-NOTES, HP-97 users have
discovered a way to get their machines to do some fancy plotting
(without burning up the print head). Perhaps this puts the HP-97
somewhere between the SR-52/PC-100 and the TI-59/PC~100A in the
Friendly Competition printer graphics arena.

52-NOTES V2N8ph

TI-59/PC-100A Program: General Purpose Plotter for y=f(x) Ed

User Instructions:

1. Key E, LRN; write f(x), assuming x is in Reg 55, and end with
INVSBR LRN.

2. Key Xo, press A; Xo printed with label.

z. Key delta X, press R/S; delta X printed with label,

. Key number of desired points (N); N printed with label; N LT 71;
see printed YMAX, YMIN, and f(x) plotted with the character whose
code is at steps 036 and 037. Along the left margin on the same
line as each Yi, i is plotted. Any Xi causing evaluation of f(x)
to produce an error condition will generate an error message, and
a ? will be plotted for that point. If Xo causes an f(x) error,
abortzprocessing with R/S, choose a new Xo value, and go to
step 2.

Notess

1) Xo may be tested by storing it in Reg 55, and pressing E, R/S;
Yo is displayed.
2) Registers 5 through 49 and steps 374-479 are available to f(x).

Program Listing:

000: #*Nop *stflg 1 *Nop *Op 34 *Nop #*Nop *Nop *Op 34 *Nop #Nop *Nop
014: *0p 34 *Nop #Nop #Nop #Nop 19 - RCL 58 = div 5 = INV ¥Int EE
032s 1 INV *Loﬁ X 40 = EE INV EE STO 53 1 xEt RCL 04 #x=t 117 RCL 53
053: *0p*Ind O *ifflg 1 066 RCL 00 EE 6 = INV EE #0Op 01 *Op 05 CLR
071: *0p 20 *#Dsz 1 084 2 SUM 00 10 STO 01 #*Dsz 2 101 RCL 52 STO 00
092: 100 SUM 52 10 STO 02 INV #*gtflg 1 RCL 50 SUM 55 #Dsz 3 273 CLR
113s *Adv #*Adv *Adv R/S RCL 53 + GTO 055 *Lbl A #CMs STO 54 STO 55
130: 4401 *Op Ob4 RCL 55 #Op 06 754 #0p O4 O R/S STO 50 *Op 06 31
154: #0p O4 O R/S STO 03 STO 51 *Op 06 *Adv *Adv SBR 374 STO 57

171+ STO 59 SBR 374 *0p 19 #ifflg 7 302 xEt RCL 57 xGEt 195 xEt

189: STO 57 xEt GTO 204 RCL 59 INV #xGEt 204 xEt STO 59 RCL 50 SUM 55
208: *#Dsz 3 173 19 div (45301344 #*0p O4 RCL 57 *Op 06 - 45302431
239s *#0p O4 RCL 59 #0p 06 = STO 56 *Adv *Adv RCL 51 STO 03 1 STO 00
2573 7 STO 01 10 STO 02 RCL 54 STO 55 20i STO 52 SBR 374 #0p 19 *ifflg
279 7 358 - RCL 59 = X RCL 56 = EE INV EE *Op 00 STO 58 4 STO 04
3001 GTO*Ind 58 INV #gstflg 7 CE 2155445600 #0p 01 1735353235 #0p 02
330: 13370044 #0p 03 64000000 *0p O4 #0Op 05 RCL 55 *Prt GTO 204

358; *0p 00 INV *stflg 7 CE 71 *Op 03 GTO 059 #ILbl E R/S

— em me em e e ow me

MORE ON YX

Dix Fulton (83) has responded to G E Wilkins' request (V2N7p3)
for a general purpose y* SR-52 routine with: *LBL A %STO 02 X 0 INV
#P/R) %*EXC 00 yX RCL 02) #EXC 00 ¥P/R *x! *rtn To initialize, store
¥y in Reg 00, x in the display, and switch to radian mode. yX is
returned in Reg 00 following a call to A. If there are no prior
pending operations, the two (s can be omitted, and the two gs
replaced with =. It appears that if y is negative, odd x cannot be
larger than 31. Dix arrived at this clever routine by modifying his
V2N2pl one to meet G E's requirement that a non-integer x with neg-
ative y would provide an error condition. Both routines provide for
the 0X error by taking advantage of the fact that SR-52 INV P/R on
x=y=0 creates an error. The 56, 58, and 59 do not, and that added to
their lack of the x! function suggest a different approach for these
machines. Anyone care to try?

52-NOTES V2N8p5

EXECUTION OF UNINTENDED CROM CODE (58/59)

On page IV-52 of the owner's manual, TI notes that CROM programs
"...do not use = or RST... and end in INVSBR", implying that R/S is
not used. Although I haven't found any R/S instructions intentionally
written into the ML code, I found a code 91 at step 279 of ML-19,
which should behave as R/S if executed by the call: *Pgm 19 SBR 279.
However, the machine appears to ignor it. The = (code 95) at step
291 appears to behave normally; the Pause at step 353 appears to be
ignored, as does the p21 at step 517. I haven't yet found an artifi-
cial RST (code 81) at any of the ML CROM steps... perhaps one of the
special purpose applications modules will have one to give us the
means to see how a CROM RST would behave. Members finding any other
artificial CROM codes not likely to appear intentionally are invited
to share their discoveries. -

TRIVIA AWARD (52)

Dallas Egbert (384) offers the following discovery as a trivia
award candidate: key ¥*read, then simultaneously press the keys: B,
INV, sin, STO, EE, 4, and 0. If you've done this correctly, the drive
motor should turn on{ I wonder if the SR-52 designers have a plausible
explanation? Perhaps Dallas' discovery will challenge the even more
prodigious prodigy: Bruce Sindlinger, who according to FLYING maga-
zine (p36 June 1977) brought to my attention by Joel Pitcairn (51
apparently did "...most of the design work on the Texas Instruments
SR-52" as a teenager, having started college when he was 13. (Dallsas,
a productive minority member, has devoured about all our local high-
school's math dept has to offer, at age 14).

CONVERSION OF SR-52 PROGRAMS TO 59ese

Rusty Wright (581) asks for a few pointers on converting SR-52
programs to TI-59 use, designed for members like him who are unfamil-
iar with the SR-52. Except for straight-forward number crunchers, it
is apt to be risky to attempt to convert instruction by instruction:
there are tco many functional architecture differences that can
produce inefficiencies, or cause real trouble. Although intermediate
translation to the algorithm or flowchart level will work in many
cases, entirely different approaches will be warranted in others. For
example, there is no point in trying to convert Barbara Osofsky's
5 X 5 matrix program (V2N5p5), since 1) ML-02 is always handy, and
runs faster, and 2) there are better approaches if you want to do it
yourself, given the much larger memory capacity. For many other
SR-52 programs, there is no point in copying an approach that uses
a lot of subroutine calls to save space, when there is room to put
it all in-line, and make it run faster. My advice: make use of
routines whose clever features are machine independent, where you
can; otherwise start from scratch. Non-SR-52 users can familiarize
themselves with SR-52 operation by perusing the owner's manual and/
or back issues of 52-NOTES.

58/59 RELATIVE ADDRESSING

Carl Seel (328) asks if the labels referred to in the 2 TI-59
programs (V2N6ép3 and V2N7p2) as 1%,2°,... shouldn't be ifflg, D.MS,
ses o Well, a rose is a rose..., and I think the 1',2',... nomen-
clature helps in keeping track of what labels are used, and avoids
the confusion of executable functions with labels.

52-NOTES V2N8pbé (end)

