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THE BUSINESS DECISIONS (9) CROM

Bob Anderson (506) got an early look at this new CROM, and reports
it to be a "... super collection of programs.” Bob is a business
management/administration professional, not given to heaping undeser-
ved praise on TI, so it appears that TI chose some useful business
applications to address. At last report, Bob had not yet delved very
deeply into program operation or structure, so quality has yet to be
determined. Bob did report that a suggested (listed, but not in CROM)
number sorting program (p77-78 in the manual) doesn't work. It is
terribly slow, destroys the input data, but probably does what was
intended: assign consecutive keys (V3N2p3) to input records, and out-
put the keys in an ordering determined by ascending magnitude of cor-
responding records. It's unfortunate that the documentation doesn't
specify what results to expect, and this exercise brings up an important
question to ask yourself when writing/using sort routines: What is it
you wish/expect to be output: keys or records, or both?

Another problem shows up in this CROM, which needs to be recognized
when 2 or more CROMs are needed to solve a single problem: Since you
have to turn the power off to change modules, all intermediate results
are lost, unless the data are recorded. BD-3 requires ML-19 with the
repeated entry of 3 inputs, as well as the BD-3 output. In this case,
the user would probably find it easier to put BD-3 in user memory (it's
only 60 steps) and not have to change modules, especially if more than
one run is anticipated. For extended use, it would be worthwhile to
add a post-processor to the BD-3 code, which would initialize the
required registers for ML-19, and then call it.

It is too bad that TI still doesn't program the CROM routines to
sense machine configuration, and vary I/0 processing accordingly. For
example, BD-5 would run considerably faster if the pause-displayed out-
puts were automatically by-passed with printer connection, and there's
no reason why the user should have to set partitioning, since it's easy
enough for the program to sense whether it is running in a 58 or 59
(... 7 Opl7 Opl9 ifflg?7...) and it is given the max number of rows as
input.

Members with appropriate expertise are invited to review any of
the CROMS from programming quality and/or technical integrity stand-
points. Incidently, recent full page ads (Scientific American and
Electronics) identify Math/Utilities as #10 and Electrical Engineering
as #11, both to be "Coming this fall...".
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BRIDGE DEAL (V3N2p5)

Bill Skillman (710) has risen to Lou's challenge, and with the
program listed below cuts execution time by more than half and saves
170 steps. The key to Bill's approach is that the cards are always
put in the correct order in each hand, as they are dealt, eliminating
the need for sorting. Here's the algorithm: Form printcode for each
of 52 cards symbolized: SA, SK, ...S2, HA, HK, ...C2, one at a time,
always in the same order. Following the generation of a card, randomly
select one of 4 13-place fields and put the card in the next available
position. When a field has been filled, bypass it during subsequent
random selections. Continue until all fields have been filled. Print
the contents of the 4 fields: 13 lines, the ith line containing the
ith element of each field. Fast as it is, there is a possible flaw in
this approach, the seriousness of which is left to the user to assess:
The more the random selection becomes uneven (one to three fields
are filled well before the other(s)) the greater the probability that
the remaining field(s) will be filled with consecutive low-rank clubs.
Users should try an assortment of RN seeds and many successive deals
to see how influential this anomaly is.

In mechanizing this algorithm, Bill does some tricky pointer man-
euvering, which users should find helpful in other applications. See
how printcode is synthesized via Reg 6 and 86, and try following the
double indirect addressing accomplished with Reg 7 and 8. 1Initializing
the last element in each of the 4 "hand" fields (steps 082-090) with a
one and testing via the Exc* function (steps 149-153) is a short, fast
way to sense when a field has just been filled; steps 159-182 effect-
ively remove filled fields from the random selection process. My only
contribution to Bill's program was to add the multiple-hand capability.

TI-59/PC Program: Bridge Deal Bill Skillman (710)/Ed
User Instructions: Record banks 1 and 2 with turn-on partition. Key
seed (0-199017), press A; key number of hands to be printed (defaults
to one), press R/S. Output is printed at the rate of about 3.1 minutes
per hand., The ML CROM is required, and tested for.

000: 1ID 9"3'60522 S01 35 S02 48 S3 rtn LA S09 1 xXt Pgml SBR Write INV
029: x=t X 9 Opl?7 CLR R/S S87 R85 Op4 R9 Opé Adv OpO R83 Op2 R84 OBB
057: Op5Alv D 4 S5 R79 Opl R80 Op2 R81 Op3 R82 Op4 Op05 1 S22 S35 S48
089: S61 xXt R7?5 E' R76 E' R77 E' R78 E' B' Adv Dsz87 060 rtn LE' s86
115: 13 SO4 62 S6 Pgml5 SBR D.MS X R5 = S08 1 SUM#*8 xXt R¥8 S7 R86 +
144 : R*6 Op26 = Exc*7 x=t 159 Dsz4 123 rtn O0p35 3 - Exc8 Int = CP x=t
169: 154 S7 R3 Op38 Exc*8 Dsz?7 175 GTO 154 IB' fix2 D 13 S4 O0p20 Op2l
199: O0Op22 Op23 R¥0 Opl R*1 Op2 R*2 Op3 R*3 Op4 Op5 Dszd 195 INV fix rtn
Prestored Data:

62: "13 26 34 25 201 12 9 8 7 6 5 4 3 360000 230000 160000 150000

79: 3132353723 17133637 3632413723 43173637 143524 1622170000 36171716
PRINT BUFFER FILLING WITH AN EE OR Eng DISPLAY (58/59/PC)

Bob Petrie (632) notes that filling print buffers via Opl-4 "...
with an EE or Eng format yields some interesting results," and suggests
that the inherent Int function is not performed. What appears to hap-
pen is that as many significant figures (up to 8) as are in the effective
integer part of the number represented in EE or Eng format are trans-
ferred right-justified to the print buffer mantissa field, along with
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the exponent as displayed. The sign digit assumes values of 0,2,4,o0r 6
depending on the length of the transfered mantissa string, and follows
different rules for EE and Eng formats. For example, 1.3141516 DO7 is
the integer 13141516, and in the EE format when subject to an Op 1-4
becomes print-buffer formatted as -0000013141516 D-07 (or as an octet
of step-code: 76,60,51,41,31,01,00,00 if it could be transfered
"intact" to a program register). Displaying the buffer contents causes
a left shift of 5, producing -1.3141516 D-12 .

LAST DIGIT VIEWERS

Short routines to extract the hidden guard digits in a 52 have
been around for some time now (V1IN4p6 and V3N1lp3), but comparable ones
for the other TI PPCs haven't yet surfaced. The following discussion
applies to one or more of the TI PPCs, but not the 52. If a fractured-
display approach can't be found, then the mantissa must be maneuvered
by some other means, and all which have surfaced so far require use of
the EE function, limitations about which are discussed later. As in
most program-design situations, it's a good idea to decide exactly what
results are desired and how the program is to be invoked, before charg-
ing off writing code. In this case it is important to decide first
whether the program is to be called by another program, run directly by
the user, or even just keyed manually. Steps and execution time can be
saved if the user examines a displayed number, and initiates mantissa
partitioning according to some simple rules. Also important in this
case is the type of stack arithmetic performed. Early 56 machines
truncate the 13th digit of the first of the 2 operands used by a dyadic
function; later 56s truncate the 13th digit of both operands (V2N2p6).
So for either model, register arithmetic is required to preserve 13
places, and one can manually extract the ten least significant digits
as described in VIN7p2, But program processing would need to perform
the "... subtract from it the first 3 digits (including the indicated
decapower)..." part, and this is more cumbersome to get the machine to
automate than to do by eye.

Besides concerning themselves with decapower magnitude and sign,
the TI PPCs must take into account display rounding by the EE function,
using it in reducing the display to remove MSDs from the full mantissa.
For example, on a 58/59 at turn-on, key v - EE = and see that the
resulting -4,1 D-10 is the difference between w(13) and w(10) (w(n)
means n rounded to n places). Now (with the display still in sci format)
key * - EE = again, and see that this time w(13) - w(8) = -4.641 -D8
was performed. For both w(10) and w(8), rounding was "up" one place
producing larger numbers than w(13), and the differences produced
represent the so-called ten's complement of the desired LSDs of .

Now try all this with e (2.718...) instead of with 7, and see that
since the rounding is down (truncation) in both cases, resulting dif-
ferences are equal to the desired LSDs. From these 2 examples it might
appear that we have a simple method for extracting the LSDs: Perform

- EE = on the display, and if the result is negative, convert the ten's
complement result to its inverse (add 10N*l to an n-place ten's comple-
ment number). It turns out that this will work for most reals, inclu-
ding those with large decapowers, but not all. The exceptions appear
to be numbers whose 11 MSDs are all 9s, but whose decapowers are less
than 99, and any number which when its display rounded configuration

is subtracted from it produces underflow (i.e. * v D-99,98,...92; + e
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D-99,98,...92; etc). But there doesn't seem to be a practical way to
mechanize this in a program-callable subroutine, such that results are
always in a predictable format. The following 58/59 35-step routine
(which makes use of Dix Fulton's integer function found elsewhere in
this issue) uses a different approach, and appears to work as a program-
callable subroutine for all reals, returning the 9 LSDs of the mantissa
as a decimal fraction, flashing zero for a zero input: LA abs S11 log
+ (INV Int - abs) OplO = Int INV log EE INV Prdll 1 EE 3 Prdll R11 INV
Int INV EE ritn.

If you only want the whole machine number printed, and don't need
to use it internally, the simplest (but not neatest) way is to list the
octet of 8 steps containing the number as data. The following 58/59/PC
routine is subroutine callable, but requires the user to interpret the
listed steps (224-231) as data (VINlp4,5), and prints 16 lines per real:
LA xXt 10 Opl?7 9 S92 9.2 S90 xXt S91 9 Opl?7 GTO 223.

The non-printer approach can be mechanized for the 57 as: Ll abs
S1 log Ct xGEt GTO 2 + INV Int x=t GTO 2 1 + L2 = Int INV log EE INV
Prdl 1 EE 3 Prd 1 R1 INV Int INV EE rtn, which returns with the 7 LSDs
of the 1l-digit full mantissa. Overflow reals cannot be processed,
since the 57 will not execute during an error condition. A 56 version
may be written: 00: abs S1 log CP xGEt 16 + INV Int x=t 16 1 + = Int
xXt 10 yX xXt = EE INV Prdl 1 EE 3 Prdl Rl INV Int INV EE rtn which
returns with the 9 LSDs of the 13-digit full mantissa of non-over-flow
reals.

This article was motivated by inputs from Panos Galidas (207),

Bob Cruse (889) and John Mickelsen (990). All members are invited to
comment, and to suggest better approaches to non-52 last-digit extraction.

SOME 58/59 FIRMWARE REVEALED

Steffen Seitz (1030) has found that an odd CROM calling sequence
(V3N3p2) can reveal the code executed by the I+, X, P/R, D.MS, their
inverses, and the Op 11-15 functions. With a 58 or 59 at turn-on (ML -
installed), key: Op9 Pgm24 R/S R/S R/S 99 Opl? GTO O R/S D.MS, then
LRN and SST through step 487, or key List if the PC is connected.
Steffen has identified steps 000-04L4 with 0pl2, 047-057 as Opl5 , 058-066
as Opl#, 067-081 as X, 084-106 as Opll, 107-148 as INV X, 149-191 as
Opl3, 192-249 as £+, 250-283 as INV P/R, 284-302 as P/R, 303-340 as
D.MS, and 341-379 as INV D.MS. Steps 380-487 make no sense as program
instructions, and all but one octet are non-transferable (V1N2p2) if
interpreted as data. Continued listing or SSTing past step 487 begins
at step 039 with an abs instruction, then 040, O41,... 487 are as before.

Steffen suggests that the HIR 20 instructions at steps 045-046 and
081-082 serve as rtns. If so, HIR 20 behaves differently when executed
in the firmware than in user memory, where it appears to do nothing but
harden a soft display. Some variations on Steffen's sequence seem to
work: ML Pgms 2, 3, 4, 8, 11, 12, 13, 18 and 25 may be substituted for
Pgm 24, and 9 Opl7 for 99 Opl?7; no repartitioning is required with a
58. ©No other CROM module appears to work, so it seems that the linkage
mechanism to get to this firmware is peculiar to the Master Library.
Although the code looks like it is in user memory, it probably isn't:
It can't be executed or edited, and a BST causes an infinite hangup.
Also, the 488 steps exceed the current partition, and the circular step-
ping (039, 040, ...487, 039, 040, ... etc) is inconsistent with user
memory behavior. :
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Other members are invited to build upon Steffen's discovery, and
to try to gain access to other sections of firmware and/or internal
reg%sters (IAR, subroutine return address stack, arithmetic stack pointer,
ete).

REPEATING DECIMALS

As a follow-on to George Hartwig's all-digits generator (V3N6ép5),
Jared Weinberger (221) notes that 9800 + 9801 = .99 98 97 ...0. These
are rounded single cycles of repeating decimals, whose unrounded cycle
patterns are 987654320, and 99 98 97 ... 03 02 00, respectively. These
2 examples suggest a more general relationship: Starting with the
integers 80 and 81, and calling these Ko and Ko *1, form K, by preceding
K, with n nines and following it with n zeros, n=1,2,... . Then the
fraction KH+(Kn+1) is a repeating decimal having a cycle length of
(n+l) (9X100+9xlon-1+ .. .9) digits, having the form: 9...9 9...8 ...
0...2 0...0, each p...q group being n+l digits long. For example, for
n=1 (Jared's example) K +(K +1)=.99 98 ... 02 00, 99 98 etc with a cycle
length of 198 digits. For n=2, we have 998000+998001=.999 998 ... 002
000, 999 998 etc, which has a cycle length of 2997 digits. Note that
in each case 0...1 is skipped. As n increases, the cycle length grows
exponentially, so it is impractical to check this relationship for
very large n, even with a large fast computer. Anyone have a mathe-
matical proof?

There are, ofcourse, other interesting (and many more not so inter-
esting) repeating decimals (fractions whose numerators and denominators
are integers, but for which when the indicated division is performed,
the remainder cannot be expressed exactly as a decimal fraction). Mem-
bers may find the following 58/59/PC infinite division program helpful
in trying out various repeating decimal generators. To save it, record
banks 1 and 4; to use it, key the dividend, press A; key the divisor,
press R/S. The input problem is print-confirmed, and the quotient
printed: the integer part first, followed by 20-digit lines of decimal
fraction until stopped with R/S.

000: LA S12 72 OpE R12 Op6 + R/S S11 64 Op4 R11l Op6 = INT S10 Prt 1
030: S13 4 S15 1 EE 8 S16 INV EE 0 S14 5 S17 R10 X R11l = INV SUM12
057: 10 Prdl2 R12 + R11 = INT S10 R¥10 X R16 = SUM14 .01 Prdlé Dszl?
085: 048 R14 Op*1l3 1 SUM13 Dszl5 035 Op5 GTO 029

Prestore: 00: 1 2 34 56 7 10 11 12.

Mechanizing the inverse: Given a repeating decimal, find the
equivalent numerator and denominator integers looks 1like a considerably
tougher problem to solve if other than a brute-force trial and error
approach is taken. Members are invited to address this challenge.

TIPS AND MISCELLANY
The Math Integer Function (V2N12pl, V3Nép6, V3N7p5): Dix Fulton

(83) beats the others with: ... * {INV Int - abs) OplO0 = Int ...

TI's_Sourcebook For Programmable Calculators: Kirk Gregg (748)
brought this new TI publication to my attention. 58 or 59 owners who
bought/buy their machines between 15 August 1978 and 31 October 1978
are eligible for a free copy. Others may buy the book at $12.95 each.
This appears to be a 58/59 version of the Programming Workbook written
for the 52 (V1N5p2), but with more applications examples. It may be
useful to users of other machines. I will report further after I've

seen this book.
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multiZsTep routines to display the status of flags. Assuming that the
purpose of these routines is to help debug other programs, I find it
difficult to find an occasion for which the considerably shorter man-
ually keyed: ifflg n 888 (V1N4pb6), or ifflg n N (V3N3p6) wouldn't be
better. Comments?

The Newest 59s: Dave Leising (890) reports that the newest 59s
bear a code of The form: ATA nnnn (V3N4pl), and "... contain a differ-
ent mag head which will not allow reading cards ..." made on older
machines. TI acknowledges that some calculators are assembled in
Abilene (Texas), which probably accounts for the first A in the ID code.
Mag card compatibility may be unit-dependent: I find that some cards
recorded on older LTA machines will read (sometimes) on an ATA machine
made the 23rd week of 1978. Hardware visible in the battery well
appears to be the same as for LTAs of late 1977 vintage, except that
4 resistors are larger in the newer machine, and the PC board, while
having the same layout, is more like the first machines (June 1977) in
the appearance of the surface material. ©No differences in functional

behavior have come to my attention yet.

Membership Address_Changes: 207: 150 Monroe St #302 Rockville,
MD 20850; 398: ~ 35 Oakfields, Broad St, Guildford, Surrey GU3 3AS
ENGLAND; 616: 761 Via Flaminia Vecchia 00191 Roma ITALY; 689: bei
Hartmann Schnewittchenweg 5 D7500 Karlsruhe GERMANY; 998: 9 Centre
Park Dr Ottawa, Ont K1B 3C2 CANADA.

Machine Power Consumption (Blank Display V3N9p6): Sven notes
that power (milliwatt) drain Is a better way to compare machine states
than current (milliamp) drain, since for any fixed state, the machine
draws more current as the battery becomes more discharged (output volt-
age drops). For a displayed 1, Sven measures 515-540 mw for one pack,
530-560 mw for another, and an average 1.45% power consumption dif-
ference between blank and 1 displays,

Writing HIR Sequences (58.59): Tony Tschanz (1034) suggests seq-
uences of the form: ...R82 BST BST i SST j ... where i is the instruc-
tion preceding the HIR and j is the HIR operand. j is most easily
formed by finding a function key with the required op code. For example,

to write: ... + Hl12 ..., key R82 BST BST + SST B. This method saves
the Del step required by the usual method, but is no better if i is an
op code which by itself would be a pseudo. For example, ... S31 H3 ...

written S31 R82 BST BST Del SST 3 has no more keystrokes than SST R82

BST BST BST S31 SST 3.

Flashing Display Variations (V2N12p4): Tony finds that the 59
(58 too) does have an error condition display format analogous to the
52's soft flash: The sequence: CLR 1/x 0 . alternates the C symbol
with the displayed zero. It appears that the soft flashing display
prevails through number buildup in the display, but turns hard when
the display itself is hard, unless either minus sign is present. For
example, CLR 1/x 25 initiates a soft flash, which turns hard following
the keying of STO, But CLR 1/x 25 + maintains the soft flash following
STO.

Mag Card Cues (52,59): 1In cases where successive mag cards are
to be read, but where their selection is determined by the outcome of
on-going processing, Bob Petrie (632) suggests having the last pro-
cessing of each card provide a cue identifying the next card to be
read. The first processing of the next card compares the cue with its

identity, and alerts the user to mis-matches.
52-NOTES V3N10p6 (end)



