336 343 #3443 3* +* 3633 *
¥ % * ¥x ¥ % -):-;)((:** g**** *3#H46
K * #* % #* * <€ 3* i3
L2213 * L2223 % 3% * 3+ +* * H*3 3 333
- ¥ *i £ ¥ ¥ ¥ P
*HH¥ ka2 223 * I* *HR 3* 3363 % #3636
Volume 3 Number 2 48/39 February 1978

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

PRACTICAL APPLICATION OF OBSCURE BUT POWERFUL PROGRAMMING FEATUIL.ZS

In asking the question: Has anyone found a practical use for
having a subroutine call itself? Cliff DeJong (290) suggests a broad
topic for membership exploration: Given one of the more powerful but
seldom-used machine capabilities, show how it can enhance the solution’
of a practical programming problem. Several somewhat obscure 58/59
capabilities come to mind: 1) Use of all 6 subroutine levels; 2) Use
of both an indirect conditional and its indirec¢t transfer together,
i,e. Dsz*ab*cd; 3) Use of the list, trace, and Op 8 functions under
program control; and 4) Use of HIR operations to alter stacked operands
before pending arithmetic is executed. Members are invited to address
these and to suggest other related topics covering any of the TI PPCs.

I'1l lead off with some thoughts concerning Cliff's question.
Given the architecture of the TI PPCs, I can't think of a practical
application where having a subroutine call itself is an advantage. Seq-

uences of the form: ...Ibl a ...b ...Lbl b ...rtn are indeed useful
(see the V2N5p5 program), but amount to 2 routines sharing some common
code, not one routine calling itself. A routine of the form: ...Lbl a

++. @ .,.rtn calls itself, but without further specification, would
not terminate. It could be made to terminate by writing something of
the form: Lbl a seql ifflgx b stflgx a Lbl b seq2 rtn., Calling it
with Flag x unset would cause the code designated by seql and seq2 to
be executed as: seql seql seg? seq2; calling with Flag x set would
produce: seql seq2. More flags could be introduced to produce more
variations, but I suspect the overhead of flag testing and setting
would make straight forward calls to separate subroutines more attrac-
tive. Anyone else care to address Cliff's question?

EFFICIENT PRINT CODE STORAGE

Clyde Durbin (618) has found a HIR application which significantly
minimizes data storage and processing requirements in many cases. His
approach takes advantage of the differences in how Op 4 and HIR 08 treat
display values during transfer to the print buffer, While Op 4 copies
the 8 LSDs of the integer part of the display into the 8 LSDs
of the print buffer (HIR 8), the HIR 08 function copies an entire real,
as formatted in the display register. Thus only the print code con-
tained in the integer part of the displayed mantissa is used to gen-
erate a character string with an Op 4, while as many as 8 LSDs (regard-
less of decimal point position) are used with HIR 08 storage. Using
Op 4 to prepare one character string for printing, and HIR 08 on the

- em em e a8 e em e me e wn e e e Me wm me am ae mm e e ww em e e me am ee e e @ e es

The SR-52 Users Club is a non-profit loosely organised group of TI PPC ewners/users
who wish to get more out of their. machines by exchanging ideas. Activity centers
en & monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh

in Dayton, Ohio. The SR-52 Users Club is neither sponsored nor officislly sanctioned
by Texas Instruments, Inc. Membership is open to any interested person: $6.00
includes six future issues of 52-NOTES; back issues start June 1976 @ $1.00 each.

same number for another not only saves the unpacking required in the
V2N11p6é approach, but allows for overlapping that can enable one real
to prepare 2 strings of up to 4 characters each. For example, Op 4 Op
6 on 916323117.4437 produces the tag DONE, while HIR 08 Op 6 on the
same number produces NEXT. Note that the leading 9 serves as a dummy
filler to force right justification within the 13 mantissa places, and
that because of the odd number of mantissa places, overlapping with

Op 5 printing would be difficult at best. However, there may be useful
strings of characters some of whose print codes can be split and re-
paired to form other useful strings. For example, 1624222437.253
produces DIGIT with Op 1 Op 5, but VGW:~ with HIR 05 Op 5 (sorry, I
couldn't think of a more useful example!), Members are invited to
share their best (most practical) Op 4/HIR 08 Op 6 and Op 1-4/ HIR 05-
08 Op 5 creations.

RECORDING CURRENT MACHINE STATES (52,59)

In many practical applications it would be helpful to be able to
record on mag cards such things as flag status, display format, angle
mode, partitioning, printer connection, CROM module number, the con-
tents of the HIRs and the T register ... prevailing conditions which
the user might need to manually reinitialize each time he reads a
particular card. Converting such information into recordable data
is, for most of the above, a fairly straight forward exercise, but
doing it efficiently may be somewhat challenging. For example, 10
registers could be designated to hold flag status: each stored with
a 1 for set, 0 for not set, but this might be unacceptably wasteful
of data registers. So it is attractive to consider data packing as
an alternative. The following sequence stores the status of all 10
flags in Reg 1, taking advantage of the machine interpretation of flag
10 as flag 0 (TI-59): ... 0 SOl 10 S00 1 S2 L1' CLR INV Ifflg¥*0 2' 1
L2' X R2 = SUMO1l 10 Prd2 Dsz0 1' ... and the following takes the value
in Reg 1 and sets all 10 flags accordingly: ... CP 10 S0 L3' R1 + 10
- Int S1 = x=t 4' Stflg#*0 IA4' Dsz0 3' See VIN5p6 for a display-
format-determining routine, V2N1lpé for angle mode indicator, and
V2N9p2 and V2N10p3,4 for printer connection sensing. Partitioning can
be decoded with: ... Opl6é INV Int X 10 + 1 = Int S1 ,.. and set with;,..
Rl Opl? Picking a suitable approach to saving the contents of
the HIRs is somewhat frustrating; There ought to be a straight forward
way to loop through a basic sequence 8 times, but there doesn't seem
to be since the HIRs are not indirectly addressable under program con-
trol. The following sequence will transfer the contents of thg ﬁIRs
to Re% 1-8 by an iterative process, requiring dynamic code modifica-

N

tion (V1N2p3), but not efficiently: ,,, 10 Opl? 10.82 S99 8 SO L1' 10
Opl7 1 SUM99 6 Opl7 GTO 166 .., 168: S*0 Dsz0 1' ..., . The straight
forward: ... H1l S1 H12 S2 H13 S3 Hl4 S4 H15 S5 H16 S6 H17 S7 H18 S8 ...

is both shorter and faster. o ;
Members are invited to find and share better approaches, and to
suggest other things worth recording; efficient recording utilities will

be valuable to many users.
52-NOTES V3N2p2

SORTING AND SEARCHING: SOME POPULAR APPLICATIONS (59)

While member feedback on the V2N8pl and V2N1l1lp2,3 articles has
so far been slight, there is growing interest in developing efficient
approaches to 2 related topics: 1) Addressing block-stored data by
arbitrary tags, and 2) Sorting data by magnitude. Mechanization of
both topics reveals machine as well as data dependency, and since
practical implementation concerns more than just a few data, the dis-
cussion which follows centers on the TI-59/PC-100a.

— — — G i P o e Gm dmm v mmme e e t—

of considerable interest to many users: A collection of entities,
which I refer to here as records (machine-represented by specified
numerical values), is to be stored in a specified block of data regis-
ters, each record identified by a unique tag or key (also machine-
represented by a specified number) such that the required code and the
execution time required to address each record from its key are mini-
mized. The special case where keys match one for one the addresses
of allocated data registers is simple enough to mechanize efficiently
via indirect addressing, but it precludes the user from choosing
"natural"” keys: numbers and numerical represcntations of characters
directly associated with the stored records. So let's look at a real-
world situation which Bob poses: 20 departments in an organization
are identified by the numbers (keys): 2,4,6,8,9,10,13,17,18,22,23,25,
29,31,32,33,34,51,72, and 73, each of which is associated with a labor
rate (record). The records are to be stored in a concise block of
data registers (not scattered throughout the Reg 2-Reg 73 range), and
be efficiently addressable by their keys. A straight forward approach
would be to compare an input key with all stored keys, one at a time
until it is matched, at which time processing is diverted to appro-
priately initialize a pointer. But this would be prohibitively costly
in both code and execution time. Another approach might be to try
something along the lines of Ordered Hashing (V2N8pl), which Bob experi-
mented with, using the ML-15 random number generator to serve as the
hash function. This is an improvement, but is still a bit slow, and
requires handling quite a few "collisions" (2 or more keys produce the
same hash (register) address).., a problem not likely ta be solved by
trying to find a better hash function. But assuming that the keys are
not to be changed, in some cases advantage can be taken of the pattern
they form. In this example, all but 3 of the 20 keys can be matched
one for one with a register in the 1-34 address range, which might be
an acceptably concise block. Each of the remaining keys: 51,72,73
should then be matched with one of the 14 unassigned registers in the
1-34 address range, and use made of the remaining 11 for program
scratch. But what's the best way to match the remaining keys? It is
tempting to look for a special no-collision hash function, which might
be mechanized along the lines of the following algorithm:

If K > 51 set h(K) <= (K mod M) + 1

Else set h(K) <— K
which will do the job with M=47, and in English says: If an input key
(K) is greater than or equal to 51, evaluate a hash function h(K) by
adding 1 to the remainder modulo M (the remainder in integer form

52-NOTES V3N2p3

resulting from the division of K by M) of K. If K is less than 51,
use K itself as the hash function value. In either case, the value
n(K) points to the desired register. The number 47 was found by
trial and error to satisfy the relations h(51)#h(72)#h(73), all in
the 1-34 range of unassigned registers. The routine: LA S1 xXt 50
XGEt 1' Rl + 47 = INV Int X 47 fix 0 EE INV EE = S1 Op2l1 L1' rtn
accepts one of the 20 keys in the display, and following a call to A,
produces the corresponding h(K) in Reg 1. Incidently, the fix 0 EE
INV EE is required for rounding, and although fix 0 D.MS works just
as well, it takes about 4 times as long to execute. The fix O can be
eliminated if this routine is always called with a fix O display.

But it turns out that for only 3 keys, a straight forward match-
and-process approach is considerably faster, and not much longer: IA
S1 xXt 50 xGEt 1' 51 x=t 2' 72 x=t 3' 26 S1 rtn L2' 5 S1 rtn L3' 27
S1 L1' rtn. This exercise illustrates an important programming
precept: Don't let exotic schemes close your mind to simpler ones
that are better (unless your objective is to make an exotic scheme
work!). One more thing to keep in mind when approaching the problem
of how best to process arbitrary keys: It may pay off to spend a
fair amount of effort looking for patterns which can be matched by
simple non- or low-collision hash functions. There is a straight
forward mathematical procedure for fitting n-1 data points with an
nth degree polynomial, and while such an approach is impractical for
large n, it suggests a compromise: Try out various combinations of
simple mathematical functions: trig, log, arithmetic, etc; with per-
severance and a little luck you may be able to solve the collision
problem, '

Sorting Data_By Magnitude: In the previous problem, the user
doesn't care where each record is stored, so long as it is readily
accessible by an arbitrary key. Sorting data by magnitude is a
different kind of problem, and arises any time the user wishes to
start with an unordered sequential set of records and put them into
ascending (or descending) order. While these records could also
have arbitrary keys, such are not necessary to illustrate the sorting
techniques discussed here, and in the interests of simplicity a
record's key will be considered identical with the address of the
register in which it resides. There are a few data dependencies to
keep in mind when choosing an approach: 1) The initial ordering, 2)
The number of repeated values, and 3) The number of data. These
combined with machine idiosynchrasies make the choice of approach .
consequential. With no packing, about 100 data is a practical limit
for the 59 to process, and for quantities in this neighborhood a
variant of the so-called Shell Sort method does reasonably well. The
program that follows was mechanized from an algorithm appearing in
POPULAR COMPUTING (Jan 78 p5). Members wishing to examine Donald
Shell's method in detail will find a technical discussion in Vol III
pp 84-95 of Knuth's "The Art of Computer Programming”. Use is made
of the HIR operations (V2N9) to maximize data capacity, and as you may
have noticed earlier in this issue, the mnemonic HIR has been short-
ened to H. A reverse-order input of 99 records takes about 21% minutes
to sort; a sample of 99 random numbers produced by ML-15 took 26%
minutes.

52-NOTES V3N2ph

TI-59/PC-100A Program: Shell Sorting of up to 99 Data Ed

User_ Instructions: Key number of data (n), press E; key records (rj),
press R/S, for i=1,2,... n. Execution begins following the input of
rn, and when the program halts, Reg 1 - Reg n contain the input records
sorted low to high, the contents of which may be displayed by successive
B/Ss if a printer is not connected, or are automatically printed if it
is.

PROGRAM LISTING:

000: LE xXt 10 Opl? CMs xXt H8 H? SO R/S S#0 Dsz0 015 H17 + 2 = Int
028: H7? CP x=t 104 1 H6 H18 - H17 = H5 H16 H4 H14 SO R*0 xXt H17 +
059: H14 = S0 R*0 xGEt 090 xXt S*0 H14 SO xXt S*0 H17 H54 1 xXt H14
087: xGEt 049 1 H36 H16 xXt H15 xGEt O45 GTO 022 1 INV List SO R*0
111: R/S 0p20 GTO 109

Sorting permutations of a fixed quantity of specified values by
magnitude is a special case of this second type, which Lou Cargile (625)
has been exploring using several of the TI/HP PPCs to effectively per-
form card shuffling, dealing, and arranging for the game of Contract
Bridge. His 59/100A program which follows combines a number of illus-
trative approaches and techniques, and will be a tough challenge to
anyone aspiring to write a better one.

TI-59/PC-100A Program: Bridge Deal Lou Cargile (625)

n, press B.

Program Listing:

000: LE' R¥20 Op0 Opl Op5 Op0 Op5 1 INV SUM20 rtn LA R19 SBR245 39
028: S17 1 SUM25 R25 Prt CLR INV Stflg2 R19 X R26 + R27 = INV Int
051: S19 + R16 = INV Int X 52 = Int S11 + 13 = Int S12 + 1 = SO Rll
080: + 1 - R12 X 13 = S13 R*0 + R13 INV log EE S13 INV EE = INV Int
106: X R13 = EE xXt CLR R13 + 10 = xXt INV xGEt 036 xXt INV SUM¥*0
128: xXt 1 INV SUM17 4 SUMO xXt SUM*0 R17 + 13 = INV Int xXt O INV
150: x=t 036 xXt Stflg2 8 SO E' 0 S24 4 S9 R*0 x=t 211 loi EE Int S15
176: INV EE INV log EE INV SUM*0 CLR R9 + 61 = S21 R15 + 47 = S23
201: R#*21 + R*23 X 100 = Op*9 SUM24 1 INV SUMO Dsz9 166 R4 x=t 236
228: Op05 4 SUMO GTQ 160 Adv Ifflﬁz 233 Dsz"22" A R/S S19 1 EE 13 INV
252: EE + 9 = S1 S2 S3 SO4 3 S47 4 Sh8 5 SA9 6 S50 7 851 10 S52 11
285: S53 12 Ss54 2,01 S55 25 S56 34 S57 26 S58 13 $59 9821 S26 ,211327
326: S27 69 S20 rtn R17 INV x=t 036 INV Stflg2 E' GTO 160 LB S22 GTO A
352: 1D S16 16 Op4 R16 GTO 395 LE xXt 6 Opl? CMs 7 Opl7 OpO R60 Op2
381: R61 Op3 Op05 17 Op4 Adv xXt S19 Op6 Adv R/S

Pre-stored Data: ‘

80T TI43524 1622170000 36000000 23000000 16000000 15000000 4317363700

67: 3632413723 1713363700 3132353723

TIPS AND MISCELLANY

A Safe, Handy Hardware Interrupt_(58/59): In cases where no CROM
program is called within a loop, George Hartwig (638) has found a
method paralleling the SR-52 D-R switch application (V3Nlp4): A dum-
my call to a CROM program placed at a safe position in the loop works

nicely with a manual RST to cause a transfer to step 000 of user memory.
52-NOTES V3N2p5

For example, write: 000: R/S LA 20 SO L1' DszO 1' Pgm 7 SBROO5 GTO A.
Press A, and after an arbitrary time interval, press and hold down
RST until execution halts. No matter when the RST is pressed, the
halt occurs at the step 000 R/S, following a completed Dsz cycle. It
_appears that it doesn't matter at what step the CROM program is called;
so long as the RST is depressed during the call, no CROM code is exe-
cuted. If the CROM call is to an undefined label, an error condition
is set, but transfer to step 000 of user memory still occurs. But for
practical application, it is best to call a CROM program at a rtn (as
in the above example), since this minimizes execution time (about 200
ms) and doesn't let the CROM code do anything during times when the
RST is not depressed.

Use of pil to Make Ibl Lbl Tricks Work for the_58/59: Rusty
Wright (381) discovered that the SR-52 LBL LBL tricks can be made to
work on the new machines if each Lbl Lbl sequence is preceded by the
SST pseudo (p4l). For example, Jared's flag reversal routine (V2N10p2)
for the 52 can be written: ...Ifflg0 p4l Lbl Ibl INV Stflg0... for
the new machines. Carl Paulson (855) has been exploring other sequen-
ces with p#4l executed under program control, and finds that the first
R/S or any number of p3ls following one or more pi4ls is ignored, All
this added to the unorthodox manual use of SST in creating fractured
digits (V3N1lp6) should help to encourage further exploration for new
SST/phl uses.

' PC-100_to PC-100A: Mike Brown (128) reports that he turned his
.the 2 intended settings, effectively creating the "other" position on
" the PC-100A. The only problem Mike encountered was that sometimes the
machine "... has trouble printing a line of 20 of the same characters”,
ggiigohe suggests may be due to a less robust power supply for the

56/57/58 Program Exchange: Dave Johnston (5) has a new catalog
dated 1 Feb 1978 listing 26 math, 8 statisties, 9 operations research
and simulation, 24 physics, 10 other physical sciences, 24 engineering
and technology, 3 life and behavioral sciences, 13 games, 6 finance,
and 1 general info-test routine... programs written for the SR-56, of
which 34 have been translated for the 57, and 15 for the 58. A few
more programs in scattered categories were written for only the 57 or
58. Send Dave a SASE and 15¢ for the catalog. He continues to provide
program copies at the modest rate of 5¢ per page.

CROM_HIRs (V3Nlp5): Several members have noted that T S Cox
probably meant to refer. to the Blackjack program (11) of the Leisure
- Library, and that while step 240 is a code 82, it is part of a GTO
address, and was not intended to be a HIR operation. On the other
hand, Roy Chardon's reported use of H8 in Pgm 13 of the Real Estate
Library was intended (H8 at step 183 and H18 at step 219). In order
to avoid confusion, members are asked when discussing CROM code to
indicate whether a stated sequence is intended or unintended. Intended
code is defined as that which the printer would list, addressed con-
tinuously from start to finish; unintended as printed starting from an
intermediate step which separates the elements of a composite instruc-
tion.

52-NOTES V3N2p6 (end)

