333t HH3H g * W33 %33 B33k #HH¥N
* #* *¥# 3 * ¥* 3¥* 3 #* ¥*
* * *o3* X 3# ¥* % *® #*
#33E * RN % ¥* #* * * * Feott 363
o I S T S S #, . F
"<
RN ;6;**-3(-* 3 3? et :}i KRR %%

Volume 3 Number 4 48/39/38 April 1978

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424

= em em e e e em e o wr e e em em ee mm am em @m mm em me me mm wm me e e e e em e e e e

DETECTING MACHINE HARDWARE CHANGES

As was the case with the 52 and 56, TI is making hardware changes
in the new machines without changing names or adding revision identi-
fiers, Fortunately, the date of manufacture is stamped on the back of
each machine. (As I recall, one of you phoned this information to me,
but I neglected to write your name down). By relating machine charac-
teristics to date made, perhaps we can determine when detectable mods
were made. The date is coded in 4 digits following the letters LTA
(DTA for older machines made in Dallas rather than in Lubbock) in an
aabb format, where aa is the week and bb the year. If one of you
electronics-hardware experts will volunteer to be the focal point, I'll
invite members to describe their machines (operational behavior, com-
ponent descriptions, PC board design, etc) to you, and publish your
findings. Dave Leising (890) notes a component difference in late-
model 59s which he identifies with a card read/write improvement. I
confirm Dave's identification of an added transistor, and note also
the addition of more resistor/cafacitor-like components, and a diff-
erent PC board on a 59 made the 49th week of 1977, as compared with
one made the 24th week. The newer 59 does indeed read and write mag
cards with fewer errors, and displays a brighter C when calculating
(which may not be an improvement if this requires more power).

The ability to relate machine configuration to the date made
should help the buyer find the best machine design currently available,
as well as give the user a better understanding of his particular
machine's behavior,

PRECISION AND ACCURACY

In the context of PPC calculations, precision is the degree to
which the machine representation of a number approximates an absolute
definition of that number; accuracy is the degree to which calculated
results approximate an absolute definition of the results. Thus while
precision contributes to accuracy, it is not the only factor, and how
calculations are produced may affect accuracy even more than precision.
We have already confronted cases where trig function processing can
cause problems (V2N2pl and V2N5p4), and there are many cases where
truncation at the LSD causes grief. Professor W Kahan at UCLA (Ber-
keley) examines machine accuracy versus apparent precision in a recent
memo (of limited circulation), introducing some concepts which users
may find helpful in the analysis of calculated results. He states
that while the easiest way for a user to find out what's happening

- e e e ww e wm ex mm ws em me em e wm em wam mm em am mm em em em mm e mm mm o em en v e ew em em e

The SR-52 Users Club is & non-profit loosely organized group of TI PPC owners/users
who wish to get more out of their mschines by exchanging ideas. Activity centers

on a monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh

in Doyton, Ohio. The SR-52 Users Club is neither sponsored nor officially sanctioned
by Texcs Instruments, Inc. Membership is open to any interested person: $6.00
includes six future issues of 52-NOTES; back issues start June 1976 @ $1.00 each.

is via a so-called Forward Error Analysis (FEA), what must usually be
made is a Backwards Error Analysis (BEA). If a function f(x) is
approximated with machine processing by F(x), then F(x) submits to a
satisfactory FEA when F(x)=almost f(x). But this may only be true
when the x specified in f(x) is exactly the same as the x used in
F(x). What usually happens is that F(x)=almost f(almost x) which can
easily cause F(x) to be nowhere near f(x), and is a situation which
requires BEA according to Kahan. Keeping in mind the 2 almosts and
their possible cumulative effect should help the user understand
what's going on, whether he approaches error analysis quantitatively
or just qualitatively. Members are invited to further explore FEAs
and BEAs vis-a-vis the PPCs.

DESIGNING A PRACTICAL FILE MANAGER (59/PC-100A)

While it is tempting to try to devise ingenious search techniques
(V3N2p3) to minimize the number of data registers required for arbi-
trary-key access, it may turn out that for most practical applications
execution speed is more important than register economy.

The following program ties up all possible data registers, but
is fast and easy to use. Members are invited to try it (or their own
versions) in real-world applications and to report results, suggest
improvements, etc. Files are organized by sets of 2 mag cards, each
pair holding up to 99 files whose keys are 1 or 2-digit numbers in
the 1-99 range. File contents (records) are interpreted as data when
in the 10-99 to0 109 range, and as character strings when GE 109.
Provision is made to assign an identifying number to each card-pair,
and this tag along with all stored records is preserved as a card-
pair is read in from time to time for file reconfiguration. Files
may be accessed in any order for store, recall, add, or subtract oper-
ations, and a listing made at any time of all non-zero records. A
printed record is made of all transactions, and users reconfiguring
files many times may wish to include revision information in a card-
pair identifier. For example 25.12 might identify the 12th revision
of card-set 25. This tag is mag-card-stored in Reg 0, but preserved
in H4 during file reconfiguration. Reserve an otherwise blank card
to serve as a master for transfering the program to side 1 of each new
card-pair, keeping in mind that steps 160-239 are treated as data.

TI-59/PC-100A Program: File Manager Ed

User Instructions:
1. To Prepare A File Manager Master Card:
a. Write the program listed below into blank user memory.
b. In RUN mode key 10 Op 17 1 2nd Write.
c. Insert card, and record.
d. Mark card: "File Manager Master'.
2. To Prepare For Generating a New File Block:
a. In RUN mode key 10 Op 17 CLR.
b. 1Insert the File Manager Master Card, and read it.
c. Key card number (any real), press 2nd E',
3. File Processing:
a. To Address a File: Key its 1 or 2-digit key, press A, see its
contents displayed.
b. To store a Record: Key the value (numbers GE 109 are interpre-
ted as character strings). If 3a was just performed, press
R/S. Else press SBR STO.

52-NOTES V3N4p2

c. To recall a Record: Press SBR RCL.

d. To Add to a Record: Key value, press SBR SUM.

e. To Subtract From a Record: Key value, press * SBR SUM.

f. To List all non-zero Files: Press SBR List.

g. To Record Current File Configuration: Press E, or for new or
revised card ID, key ID, press 2nd E'; record all 4 banks on
2 mag cards.

4, To Address an 01d File Block:

a. Read the 4 card-sides into memory, with a 159.99 partition.

b. Press C and do step 3 as desired.

Program Listing:

LA SO ID 261745 Op4 RO Adv Op6 R*¥0 rtn LS S$*00 363732 IB OpO4 1 EE 9
039: xXt CLR R*0 xGEt 049 Op6 rtn Op2 Op5 rtn LR 351527 GTO B LSUM
066: xXt 364130 Opl xXt SUM¥0 Op6 rtn LList Op00 27243637 Op2 Adv
096: Op05 99 SO CP R*0 x=t 118 D 35153516 B Dsz0 102 Adv Adv Adv Clr
126: R/S LE' H4 31 LE 153516 Op4 H14 SO Op6 GTO 122 LC RO H4 GTO E

ADVANCED PROGRAMMING TECHNIQUES V: DESIGNING OPERATING SYSTEMS

Computer operating systems (0S) generally consist of a control
or executive program, and the programs it directs to manage the
required communication between mainframe computers, their periferal
devices, and users,., utilities such as compilers, assemblers, loaders,
editers, file maintainers, interrupt processors, job schedulers, job
control language interpreters, etc. Among these utilities, one of the
more challenging to design is a compiler, which translates a high order
language (HCL) into assembly (AL), or machine language (ML). The
difficulty lies mainly in the interface between how a human can best
express what he wants a program to do, and how a machine can be made
to implement his intent. Humans tend to think most effectively using
concept-linked symbol strings, and HOLs (FORTRAN, BASIC, COBOL, APL,
etc) are designed to let the programmer use familiar symbols as "natur-
ally" as possible., An AL is almost understandable to the machine:
each instruction is symbolic, btut has a one-to-one correspondence with
a ML instruction (a binary number). An assembler translates AL code
into ML code, and a loader puts the ML code into the proper memory
locations. ‘

PPCese has some of the characteristics of HOLs, ALs, and MLs, but
there is not much in common with any one of these, So it's a challenge
even with the powerful TI-59/PC-100A combination to simulate even just
a part of a mainframe compiler and its associated OS support. The
program which follows simulates the implementation of a BASIC program-
ming construct via a remote terminal, The user "types" an assignnent
statement consisting of single-character variables and operators, fol-
lowing the usual convention that only a single variable appears to the
left of the = sign. The usual + - * / arithmetic and- exponent symbols
are used, along with parenthetical nesting. Following input of up to
20 print codes (a variable may be any of the 59's 64 characters which
is not one of the designated operators or parenthesis symbols), the
program prints the statement as it would have been typed at a computer
terminal, proceeds on into the interpretation process, calls for vari-
able data to be input, runs the compiled/assembled/loaded code, and

52-NOTES V3N4p3

prints the answer. The user may then make more runs with the same
program with new input data, get a listing of the program, or begin
compilation of a new statement.

Code transfer rules (V1N2p5 and V3Nlp2) complicate the process of
synthesizing instructions as data, and in order to dodge position B
restrictions, AB positions are always set to 60 (the code for DEG, which
does no harm). Positions CD are also set to 60 in cases where RCL n
would otherwise be split by a 60 at the AB position. The resulting
compiled code is perhaps somewhat realistically inefficient, just as
real compilations are usually less efficient than human-designed AL
code. AOS architecture essentially eliminates the real-compiler require-
ment to translate HOL semantics into the proper ordering of machine
instructions. Mechanizing this simulation on an RPN machine would be
considerably more complex. There is program memory to spare if some
register assignments are changed, and members are invited to add
enhancements, or mechanize better approaches.

TI-59/PC-100A Program: BASIC Operating System Simulator Ed

User Instructions:
l, 1Initialize: Press E

2. Input BASIC Assignment_Statement: Key the 2-digit print code for
a character representing elther a variable or an operator, press R/S.
Repeat for up to 20 characters. The first character must be a
variable, the second the = symbol (64).

3. Initiate Processing: Press A. (This step is done automatically
following Input of the 20th character). See the BASIC statement
printed, followed a minute or so later by the cue: KEY n, where n
is the character representing the first variable in the BASIC state-
ment. Abort processing with R/S if the statement is incorrect as
printed, and go to step 1.

4. Run The Compiled Program: Following each printed cue, key the data
value for The Indicafed variable, press R/S. Following input of the
last requested variable value, processing begins and the answer
printed. For new inputs, press B, and repeat this step.

5. To_Get_a Listing of the Compiled_Code: Press SBR List.

6. For New Compilation: Go to step 1.

Note: Record program with turn-on partition; program terminates with
a 599.49 partition.

Program Listing:

000: LC' INV Stflgl R#49 xXt 47 x=t 055 20 x=t 058 51 x=t 061 63 x=t
026: 064 60 x=t 067 55 x=t 070 56 x=t 073 xXt + S*49 1 SUM48 R48B Stflgl
054: rtn 85 rtn 75 rtn 65 rtn 55 rtn 45 rtn 53 rtn 54 rtn LE' C' LB'
08l: Ifflg0 165 X R46 = SUM#*47 ,01 Prdld6 1 SUMAS Ifflgl 110 Dsz45 109
107: Stflg0 rtn INV Dsz45 135 R46 X 43 = SUM#*47 ,01 Prd4é Dszd5 134
132: Stf1g0 rtn 4 EE + 13 SUM#47 1 EE 37 LA' Prd*47 1 SUM47 .01 SLé6
158: 6 S45 INV Stflgd rtn Ifflgl 204 xXt 1 SUM49 xXt + 10 =.S43 Int EE
182: + 13 SUM#*47 R43 INV Int X 100 + 7 = INV Log EE GTO 148 xXt 6 EE #
208: 13 SUM*47 1 EE 7 A' xXt GTO 081 IE 6 Opl?7 CMs 0 SO Op00 20 S49
235: CLR R/S S#49 0p20 Dsz49 236 LA 1 Sk6 20 S49 RO S47 5 S48 CIR X
263: 100 + R¥49 = INV Dsz49 293 INV Dszl47 293 Dszl8 262 = Op*46 1 SUM46E
290: GTO 258 = xXt R48 - 1 = X 2 = INV Log EE INV EE X xXt = Op#*46 Op5s
315: Adv Adv Adv 1 INV SUM49 20 S48 2 INV SUMO .01 S46 50 S47 6 Si5

52-NOTES V3N4pl

342: RO S44 92 B' 95 B' E' Dszll 352 INV Stflgl xXt 6 x=t 369 1 EE 7
368: A' 1,376901476 S*#47 LB CLR 5 Opl? 19 S49 RO S44 R48 S43 Op0O

L02: 261745 Opl CP 1 INV SUM49 R*49 CP xGEt 434 + Op2 Op5 R/S Prt S*43
430: 1 INV SUM43 Dszh4 411 0p00 6400 *+ R20 = Opk C Adv Opé Adv Adv
456: Adv R/S LList Adv Op00 27243637 Op2 Op5 D Adv Adv Adv R/S

Note: There are quite a few Dsz register and address operands which
must be synthesized.

BOOK REVIEW: PROGRAMMABLE CALCULATORS, R J and C J Sippl, 526 pages,
Matrix Publishers, 1978.

Charles Sippl (239) and his son Roger cover a lot of ground with
this book, and held off publication many months so they could include
the latest TI and HP machines. There is a lot of detail covering most
(if not all) of the handheld programmables, as well as many of the
modern desk-top machines, from hardware descriptions to elementary
programming techniques. Considering the scope of this work and time
pressures, perhaps the authors may be forgiven for some of the dis-
organization, repetition, and the errors and lack of clarity in some
of the technical text. This work does expose the reader to important
saterial not available elsewhere under one cover, and the serious PPC
user will probably find enough helpful information in this book to
make it a worthwhile buy, keeping in mind that he may want to consult
other sources on important technical topics. And, it is certainly

gratifying that Club coverage is both accurate and flattering.

TIPS AND MISCELLANY

More_on Strange LRN Behavior (V3Nlp5): Lou Cargile (625) reports
having experienced a practical problem related to Jared's discovery,
and notes 2 situations which can arise during program editing/debugging
that can themselves create insidious new bugs: 1% When at step nnn in
RUN mode, if you want to get to code headed by say Ibl Tan, it is easy
to key GTO Ind by mistake, instead of GTO Tan. Assuming that you want
to examine the code, the obvious next step is LRN, which reveals only
that you are at step nnn+tl, not the desired step, so you key LRN GTO
Tan (properly), and proceed on without realizing that a code 22 had
been written at step nnn; and 2) If in RUN mode you are single stepping
through a sequence of the form: ...Dsz Ind nn N ... and stop after
execution of the Ind and key LRN to see where you are, you will see the
step containing N, not realizing that the nn in the previous step had
been overwritten with code 11. In the first case, if you catch the GTO
Ind mistake before pressing LRN, pressing another key (1ike CLR) first,
prevents the unintentional overwrite. In the second case, about all I
can suggest is to be wary of SSTing anywhere near an indirect Dsz, and
if you stop to see where you are, follow the LRN with BST and verify the
displayed code.

Local Club: Dave Johnston (5) and Maurice Swinnen (779) are
forming a Washington DC area PPC users group. Contact either Dave or
Maurice for more information.

Membership_Address Changes: 343: 1325 Quaker St Golden CO 80401;
713: 804 Rhonda Dr Hephzibahf GA 30815; 836: 1539 Rainbow Ln Port
Richey, FL 33568; 869: New York, not New Jersey.

52-NOTES V3N4p5

Printer Spacing (58/59/PC-100A): Maurice Swinnen (779) has dis-
covered that an 0p0 Op5 line-space is 2 mm thinner than one produced
by Adv. It turns out that an OpO Op5 space causes the paper to be
advanced exactly as far as occurs following character print, while
Adv adds 2 mm. Obvious applications include printer graphics, and
paper economy. Lou Cargile (625) found (independently) that OpO Op5
helped to produce the print format he wanted for his Bridge Deal
program (V3N2p5 steps 010-013).

A Tic-Tac-Toe Option (V2N10p6): Dave Leising (890) suggests
keying GTO 227 R/S TgBR 227 saves a step) following printing of the
first blank grid, if you want the machine to play first.

Basic Hardwarc Design Information: Dave suggests writing to the
stamped on the back of your machine, as one way to learn more about
hardware basics.

Correction (V3N4pl): Prof Kahan is at UC not UCILA.

More_on Fractured Display (V2N12p3): Kirk Gregg (748) found that
at the time the display fractures, a special state prevails that causes
the = or) functions to address Reg 0, i.e. Exc =, STO =, Prd =, etc
execute as Exc 0, STO 0, Prd 0, etc. This special state prevails
through the use of many built-in functions, but not after keying any
of the numerals or CLR. The statistics, D.MS, and P-R functions do
not work while this special state prevails. As Kirk notes, this
phenomenon doesn't appear to have any useful applications, but a more
thorough understanding of it might well lead to important'discoveries.
Incidently, Jared's fractured digits sequence (V3Nlpl) produces the
special Reg 0 state, but Fred's %V3N1p6) does not, Neither does Roger's
out-of-bounds CROM call method (V3N3p2).

Use of Contributed Material: Maurice Swinnen (779) brings up the
unpublished indefinitely, and for which there may be a desire to seek
other vehicles for publication. Maurice suggests that a yes or no
response from me upon receipt would be helpful, but I'd rather not
have to commit myself too soon: topical interest fluctuates over
periods of time, and I wouldn't want to reject material that might be
just what I'm looking for later on. I suggest that in cases where you
wish to publish elsewhere, if your program hasn't yet surfaced in 52-
NOTES, send me a clear description of it, and a SASE if you would like
it returned. 1If it is currently in the 52-NOTES publishing cycle, I
will so inform you. If it has already appeared in 52-NOTES and you
still wish to publish elsewhere, please cite the original 52-NOTES
source to help minimize possible copyright contests. For the record:
52-NOTES continues to be published wmncopyrighted.

Correction (V3N3p6): Mack Maloney reports that the TI DC 9105
adaptor produces calculator DC, not 120 VAC.

Used SR-52s: Members wishing to sell their SR-52s should contact
Harold Bless (255), or a Mr S Green at DAQ Electronics Lackland Dr
Middlesex NJ (201) 560-0050.

Merged Code Labels (58/59): Jared Weinberger (221) points out
that no mention has been made of the use of the 9 merged codes: 62,63,
64,72,73,74,83,84 and 92 as labels. They all appear to work, but must
be created synthetically, like pseudos or double-digit Dsz register
addresses, and cannot be addressed from the keyboard.

52-NOTES V3N4pé6 (end)

