FARNE ##% 3 % #3034
#* # #*

FREHE RHAR *%
#* s & 3 S

L3 H
& % w0 ¥ % 3
RN % HAEH #* * +*% * 3(“. 3: .‘%;S"?i'* *%**
%* % L3 * ¥ #* * +* %
3% ¥#* % *d% #* ¥* * 3* 3
H it K +* #* RN %* FeWHWR 3%
Volume 3 Number 7 48/39/38 July 1978

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424
MACHINE NUMBER SCALING TERMINOLOGY AND DISPLAY FORMAT NOTATION

One of the consequences of writing in a terse style is the com-
munication breakdown caused by the misuse of key words. This happened
in my discussion of HIR arithmetic (V2N9p2), and I will attempt here
to summarize current usage, to propose better terminology for use with
the PPCs, and to clarify what I meant to say.

The confusion stems from my use of the computerese terms: fixed-
point and floating-point to describe machine-displayed number-represen-
tations, when these terms should be applied only to number representa-
tions actually used during number manipulations by the machine. In
computerese, fixed-point arithmetic means that positioning of a radix
point is up to the user: The machine performs axrithmetic without
scaling, sort of the way a sliderule does, and it might be helpful to
think of fixed-point as meaning no-point. Early computers performed
only fixed-point arithmetic via their microcode (the hardwired mechan-
ism for executing user-written raw or assembled machine code). For
example, an 8-bit binary machine performing unsigned fixed-point arith-
metic would treat all numbers as integers in the 0 to 2°-1 (0-255) range.
Scaling to other ranges would have to be done manually, or written into
the user's program, with the constraint that the difference between the
largest and smallest numbers be less than 256. If the 52, 56, 58, 59
PPCs had been designed to perform fixed-point unsigned binary arith-
metic with their existing register/ﬂemory capacities, they would treat
all numbers as integers in the 0-26%-1 (0-18L46744073709551615) range.
Floating-point arithmetic requires number-representation whidh includes
a scale factor, usually a power to which the machine's number base is
raised. The PPCs actually perform binary-converted-to-decimal (BCD)
floating-point arithmetic, which produces a decimal display faster
than translated binary floating point arithmetic, but which requires
greater memory capacity for the same precision. Of the available 64
bits, 52 represent the mantissa, 8 the scaling factor (decapower), and
4 the 2 signs (see V1Nlp5).

While most modern general-purpose computers provide the user with
separate machine instructions for either fixed-point or floating-point
arithmetic, the PPCs provide the user with floating-point arithmetic
only, giving him a choice of display, and herein lies a source of con-
fusion. To make matters worse, certain display formats alter the
value of the floating-point number in the display register, which is
always in the BCD floating-point described in VINlp5. So what we need

The SR-52 Users Club is & non-profit loosely orgcnised group of TI PPC owners/users
who wish to get more out of their mcchines by exchinging ideas. Activity centers

on @ monthly newsletter, 52-NOTES edited und published by Richard C Vanderburgh

in Dayton, Ohio. The SR-52 Users Club is neither sponsored nor officiclly sanctioned
by Texas Instruments, Inc. Membership is open to any interested person: $6.00
inecludes six future issues of 52-NOTES; back issues stort June 1976 @ $1.00 eoch.

are some handy, unambiguous terms to fully describe the display format,
keeping in mind that the internal representation of all numbers is
always floating-point. I propose that a "turn-on" display means the
standard INV Fix display that prevails at machine turn-on; turn-on fix
n: the standard display rounded to n places; turn-on EE: the fullest
possible mantissa in scientific notation; fix n EE: mantissa rounded
to n places; turn-on Eng: the fullest possible mantissa in engineer-
ing notation; and fix n Eng: mantissa rounded to n places. Let num-
ber type refer to mathematical definitions such as integer, fraction,
real, complex, etc. So back to V2N9p2: Change full integer-fraction
to real; floating point to turn-on or fix n EE, turn-on or fix n Eng;
and fixed point fraction to turn-on or turn-on fix n fraction.

The "floating decimal point" referred to in the 58/59 manual on
page II-8 means that the machine positions the displayed decimal point
in accordance with the scaling information contained in the display
register. Since they've probably been around too long to change, we'll
just have to live with them, but the terms fixed-point and floating-
point can be misleading even in the internal-to-the-machine context.
Fixed-point, as we have seen, really means no-point, and a displayed
or printed floating point number in an EE format has a fixed decimal
point! For a detailed technical discussion of machine-representations
and manipulations of numbers, see Chapter 4 (Vol 2) of Knuth's The
Art of Computer Programming.

SPECIAL-CASE SEARCH PROGRAMS

There is a set of problems which can be expressed generally as
f(al,a2,...an)=g(al,a2,...am), for which given different functions f
and g, it is desired to determine what values of al,az2,... produce
solutions. Quite often, there are no known analytic approaches, and
solutions depend heavily on trial and error methods. One such problem
was brought to my attention by Bob Anderson (506), and was posed as a
challenge to computer hobbyists by KILOBAUD (Dec 77 p 20 and 26; Apr
78 ppl0-12). The requirement was to "Write a program to find a1l 3-
digit numbers for which the sum_of the cube of the digits is equal to
the number”, or in mathese: a3+b3+c3= 100a + 10b + c; a,b,c in the 0-
9 range., There are several straight forward ways to attack the pro-
blem, but most are overly time-consuming: One KILOBAUD reader submit-
ted a TI-58 program which took 13 hours to .run! Bob has one (which I
have not seen) that takes 28 minutes, and he thinks he's close to get-
ting the bugs out of an 113 minute program. DMembers are invited to
mechanize solutions on any of the TI PPCs, and to send me their fastest.
Valid algorithms will assume nothing a priori concerning the solution
set: 000, 001, 153, 370, 371, and 407, although the trivial solutions
000 and 001 may be ignored. Any approach may be used which assures
finding all solutions in tne 002-960 range. Programs written for
printerless operation should pause-display each solution, and will be
given a 1% second handicap; programs with R/S or HLT displayed solutions
will have to be timed in segments. The program which follows runs in
17 min 53 sec with a call to A, and shouldn't be toc hard to beat. For
more than one run, registers 11-14 must be reinitialized. Replace the
Prt at step O40 with Pause or R/S for printerless operation.

52-NOTES V3N7p2

TI-58/59 (PC) Program: Solutions to a3+b3+c3=100a+10b+c Ed
Listing: :

000: LA R¥12 + R#13 + R*14 = xXt R11l x=t O40 Dszll 022 R/S Dszl4 A
025: 10 S14 Dsz13 A 10 S13 Dszl2 A R/3 Prt GTO 017

Prestored Data:

0l: O 1 8 27 64 125 216 343 512 729 960 10 7 1

This exercise suggests extendin§ the groblem to the more general
specification: all+a2f+,,, anf=100-1a1+10M-232+,., an, although even
the fastest computers would be too slow for very large n, unless sig-
nificant analytic shortcuts are available. Incidently, the April
KILOBAUD article does suggest some shortcuts, but the required special-
case testing might well turn them into longcuts for PPCs. 1It's inter-
esting tha% if the problem is further generalized to: alf+a2l+,,, anP =
p-Llg]+pN=-<£52+,,., an where b is any number base, that for b=2, there

are only the trivial solutions n=l, and ai=0 for all i , or all but

i=n. Perhaps it can be proven that there are no non-trivial solutions
if b is not an integer. Members with number theory expertise are
invited to comment, and to suggest other special-case search problems.

CODE SYNTHESIS VIA Op 8 LABEL LISTING (58/59/PC)

While designing the BASIC Operating System Simulator (V3Niph), I
briefly considered synthesizing the object code with labels attached
to each instruction to allow the code to be stored in data registers
without the transfer restrictions, yet making it possible to 1list it
"cleanly" via the Op 8 function. But I dropped the idea when it
appeared that there would be no way to define register operands or
other numerals. However, Tom Cox (9) has found that the Op 8 function
recognizes the numerals 0-9 as labels, even though the branch instruc-
tions do not. So, putting to use Tom's and A B Winston's (V2N10p3)
discoveries, and the fact that Op 8 will list repeated labels, one
should be able to synthesize any code sequence for listing (but not
execution). The only required non-standard conventions are that double
digit register operands list sequentially, and that step numbers should
be ignored. The following routine illustrates what can be done, and
lists a Fibonacci Number Generator routine written for the TI-57, when
run with a call to E on a 58/59/PC combination: LE 10 Op 17 CMs 92
S90 76760869 399 85760576 S98 32766676 S97 1005766176 596 9 Op 17
SBR 160 Adv Adv Adv R/S. If actually used with a 57, only the printed
mnemonics apply: ILBL 5 + PAU xXt GTO 5.

CALENDAR PRINTER COMPETITION (continued)

Tom Ferguson (421) noted that I had omitted the prime symbol for
the CLR' at step 713 of the V3N6p3 program. I tried running the pro-
ram as printed, and it appeared to work. However, as Robert Petrie
%632) found, if the first day of a month falls on Thursday, the 1 won't
print. It turns out that the 5 of the CLR's code 25 multiplies the
print code in Reg 30 by 1050, leaving it with no fractional part for
the INV Int shift at steps 098-099.

It has been interesting to watch the calendar printer programs
get faster and faster, and rather amazing that the best current pro-
grams run in less than a tenth the time required by the first. But
perhaps even more interesting is the trend of programmer motivation
during this time. The 26-minute V3N5p4 challenger was fairly easy to
beat, and quite a few members were quick to respond. But as the time
got down to 10 minutes and less, what is sometimes called the Existence
Theorem began to become an influence: If you doubt that a faster pro-
gram can be written, you won't bother trying to write it. And I expect

52-NOTES V3N7p3

some of us may have been influenced by a sense of lily-gilding: Why
bother trimming a second or two if the program is already (or presumed
to be) far in the lead. Well, fortunately at least 2 members have
ignored (or successfully overcome) these deterrents, and have contin-
ued to press on with faster programs. As late as the last week in June,
Lou Cargile and Panos Galidas were just about even, with Lou barely
edging out Panos 3 min 15 sec to 3 min 17 sec. At this point, both
were using just about all the available memory, putting as much code
in-line (which is faster than subroutine calls, or looping) as they
could, and devising a few new special-case processing tricks. HIR
print-code processing is still de rigueur, but now (Lou's and Panos'
latest both arrived in the 5 July mail) Lou has taken a significant
lead by combining carefully chosen integer/fractions, which help to
speed things up sufficiently to get a year (1978) printed in 2 min 57
sec! Panos hasn't slackened off in his efforts, but his latest gained
him only 2 seconds, matching Lou's earlier 3 min 15 sec program.

Intense as the competition has been, all concerned have so far
conducted themselves as gentlepersons, and at least one has managed to
maintain a good sense of humor: Maurice Swinnen sent in a tongue-in-
cheek "winner" which tells the user in 8 seconds which of 14 preprinted
year-sets to use for a given year! It's actually quite practical to
use, and might be an interesting challenge to 56/57 users. Here's the
algorithm: From an input year, calculate the day of the week for Jan
1st, and use this to identify one of 7 pre-printed year-sets for non-
leap years. For leap years, add 7 to the calculated year day to iden-
tify one of 7 additional year-sets, each having a 29-day February.

I'm listing Lou's 2 min 57 sec program .with all prestored data as
data to make it easier to see how it works. 13-digit numbers may be
synthesized by first storing the 9 or 10 LSDs appropriately scaled
such that when the remaining MSDs are summed, the LSD occupies the 13th
mantissa position. For example, to store: 2,000311000312, key
311000312 + 1 EE 12 = STO n 2 SUM n; to store: .2800021171400, key
21171400 + 1 EE 13 = STO n .28 SUM n.

TI-59/PC Program: Calendar Printer Lou Cargile (625)
User Instructions: Key month, press A; key year press R/S. For one

month, press B; for balance of year press C; for specified interval,
key end year, press D.

Ligsting:

000: LA S1 S4 S5 - 13 = + S47 8 Opl7 67 SUMO4 2 Sk5 R5 R/S HA R/S
031: IB O S47 LC Hl14 S3 Pgm20 SBR0O86 Pgm20 SBR177 GTO 066 7 xXt Rl
059: INV XGEt 066 - 7 = S1 + S00 12 SUMO CP R*4 H8 Int INV x=t 125
085: 3 Si5 H14 + 4 = INV Int INV x=t 124 HI4 + 400 = INV Int x=t 123
111: Hi4 =+ 100 = Inv Int x=t 124 1. SUM1l - 15 = + S03 4 Prd3 S44 H14
141: Op6 R*3 Sk2 0p23 R*¥3 SH1 R64 Opl R65 Op2 R66 Op3 R67 Op4 Op5
171: 1INV Dszl45 188 0p23 R*3 S40 Op23 R*¥3 S39 R¥*0 SUMO H5 R*0 + 99 =
200: H6 0p20 R*0 SUMO - 1,99 = H7 R¥0 SUMO H8 Op5 Dszll 188 OpO R*0
232: SUMO H5 R¥0 + 99 = H6 Op20 R*0 x=t 278 SUMO - 1,99= H7 R¥0 SUMO
265: H8 Op5 Op0 R#0 x=t 280 H5 Op5 Adv Op25 Op24 Dszd47 055 CLR rtn
291: 1D SU6 C Adv 12 INV SUM4 S47 1 H34 S5 S1 H14 xXt RU46 xGEt 295 R/S
Prestored Data:

027 7000 22222 2.000000000002 2,000002000003 2.000003000004
14: 2.000004000005 2.000005000006 2.000006000007 2.000007000010

18: 2.000010000011 2.000011000012 2.,000012000201 2.000201000202

52 NOTES V3N7ph

22: 2.,000202000203 2.000203000204 2,000204000205 2.000205000206

26: 2,000206000207 2.000207000210 2.000210000211 2,000211000212

30: 2.000212000301 2,000301000302 2.000302000303 2.000303000304

34: 2.,000304000305 2.000305000306 2.000306000307 2.000307000310

38: 2.00031000031X 0 0 0 0 0 0 0 O 0O 2,000402 2.000401000402

50: 2.000312000401 2.000311000312 0 2.000401 2.000312000401

55: 2.000311000312 0 0 2.000312 2.000311000312 0 0 0 2.000311

64: 3641003032 37410043 1700372300 2135003613 3.0000251331 .28000211714
70: 3.0000301335 2.0000133335 3.0000301345 2.000025413117 3.000025412745
75: 3.0000134122 2,000036173337 3.0000321537 2,0000313242 3.,0000161715

ROUTINES

handle negative integers properly. The following appears to work, and
is the same length as Joel's (each would be one step longer if () are
used to preserve the arithmetic stack): ...CP xGEt 1' + INV Int x=t 1'
l+-11'" =Int Joel's and Charles' findings point out the
importance of thorough testing to validate new routines, and the danger
of neglecting to try what may seem to be trivial types of inputs.

A Self-calling Subroutine (V3N2pl): R G Snow (212) suggests a
sequence which generalizes to the form: LA seql B seq2 A seq3 R/S LB
seq4 rtn to do the following: 6(seql seg¥ seq2) then seql segh seq3.
Here, as R G notes, after all 6 subroutine levels have been used, the
rtn transfers execution to the beginning of seq3 instead of seq2. How-
ever, when this routine stops at the R/S, there are 5 pending returns
to the beginning of seq3, as may be demonstrated by repiacing the R/S
with rtn, and running: LA 1 Prt B 2 Prt A 3 Prt rtn IB 4 Prt rtn with

A Short INV Int X 100 = Replacement (58/59): In cases where you
need to save steps, but don't mind extending execution time, R G Snow
and Lee Eastman (713) suggest: D.MS H18. Incidently, some of the
results appearing in H1l, H2, and H8 following D.MS and INV D.MS are
difficult to predict. For example, D.MS appears to return in Hl: 36 X
Int + 60 X .ff + 100 X ,00ff,.. of the input number, but does it

always? And, what is the formula for H2 and H8 contents following INV
D.MS? .
Print Code References (58/59/PC): R G suggests: LA 8 SO S1 CLR

LA' + Opd4 0p6 1 Dsz0 A'" 8 S00 3 Dszl A' CLR R/S if you don't have

your owner's manual handy, and need a quick printcode reference. Run

with a call to A. If you want to know what character any given 2-digit

number will produce, just key the number and Op4 Op06 in RUN mode.
Improved_Open Parentheses Counter (58/59): Jared Weinberger (221)

returns with the original number of open parentheses prevailing at the

time of call maintained. The count of this number is in Reg 1: LA

xXt 10 S1 11' (INV Stflg 7 Op3l Op22 0pl8 Ifflg 7 1' CE L2' Dsz2 3' xXt

rtn L3') GTO 2°'.

— —— o— o — —— — e — am— s e

input a.bb where Reg a0 is the first and Reg bb0-1 the last: LA (xXt
Oplé INV Int X 10 + 1) ((xXt X (INV Int X 100) Opl7 1) Int X 10) INV
Lst Opl?7 rtn. For example, a call to A with 2.05 displayed prints the
contents of Reg 20-49,

52-NOTES V3N7p5

Hyperbolic Trig Functions Shortcut (V2N7p3): John Van Wye (982)
notes that the Sinclair approach becomes increasingly inaccurate as
the input argument increases. It turns out that a slight improvement
results when the machine is put into radian mode. For 58/59 users,

Fred Fish's V2Nllpl approach is both shorter and more accurate, for

all inputs.
A Shell-Sort Application (V3N2p5): Robert Trost (996) has found
this routine helpful "...as a preparation for the Histogram Construc-

tion Program"” (CROM ST-09). As Robert implies, the sorter would be
more useful applied to a large number of inputs than for ordering output
cells, since the max number of cells for ST-09 is 12.

TIPS AND MISCELLANY

Detecting Machine Hardware Changes_(V3N4pl): Robert Petrie (632)
has compared two 59s of different vintage (24-77 and 04-78) and notes
that the added discrete components are of tighter tolerance, theé new
card reader has a thin teflon sheet between the pressure pad and the
read head, and a protective sheet of mylar has been placed between
the keyboard buttons and their contact surfaces. From what Robert
and several other members report, old machines reconditioned by TI
have all the new features, and arc better than new ones of the old
design. v

SR-56 Pscudos: David Swindell (877) reports that a hardware jump
between two specified points on the 56 PC board makes it possible to
create pscudos. From what David describes, some of these are similar
in behavior to the other PPC psecudos. Write David for details, bear-
ing in mind that TI removes non-TI performed hardware mods when repair-
ing machines, and that the mods themselves may void unexpired warran-
tees.,

Printer-Connection Slowdown (58/59/PC): Rusty Wright (581) notes
that programs run slower with printer connection “.than without. I find
that a basic Dsz loop is about 3% slower, but that there is no meas-
urable difference with 52 or 56 connection.

A Totally Blank Display (58/59): Izzy Nelken (576) was experi-
menting with sequences of the form: Pgm 11 SBR 999 R/S LRN (V3N3p2)
and found that he could produce a totally blank display with (at turn-
on): LRN 1ist 0 0 0 0 0 0 LRN Pgm 11 SBR 999 R/S LRN 5 (or any other
numeral). This behavior appears to be consistent with the rules out-
lined in V3N3p2, and suggests a handy way to save battery power with a
dormant turned-on machine. The required sequence appears to generalize
to (in turn-on RUN mode): GTO 007 Pgm N SBR M R/S LRN where N is in
the 10-17 range, and M is a positive integer which exceeds the number
of steps in Pgm H.

Club_Support_of TI PPCs: Izzy asks if "...the Club supports TI-55
and MBA programs”". Subject matter converning any TI PPC is considered
for 52-NOTES coverage, but priority continues to be given to important
discoveries, useful tips, clever routines, and illustrative programs.

56/57/58_Program Exchange: Exchange Coordinator Dave Johnston (5)
has moved to 11 Pine St Concord, NH 03301. :

PC_Carrying Case: Bill Fagerstrom (692) reports that Radio Shack
carries a padded instrument briefcase designed for CB equipment, but in
which a PC-100 will fit. Outside dimensions are 15X12X5 inches, and
the case sells for $15.

52-NOTES V3N7p6 (end)

Storing 13 digit numbers

15.00012000201
Key, 1200021 = 1 EE 11=ST0O n 15 SUN n

-25.03633131617
Key, 3633131617 +/- = 1 EE 11=3T0 n 25 +/- SUM n

-.1234567891234
Key, 456789 +/- = 1 EE 13=STO n .123 +/- SUK n

11.124596403

Key, 124596403 = 1 EE 9=STO n 11 SUM n
Or key, 11 + .124596403#STO0 n

2.010401000402
Key, 401000402 = 1 EE 12=5STO n 2,010 Sum n

2,123456789123
Key, 3456789123 = 1 EE 12=STO n 2.12 SUM n

