P 3 3 3 3 P AR RN PR

i #* ¢ i FA" % % gHen PR

¥ 3) % ¥ % 3 % 3

Fasen # PR SO 3 % T P
" * % ¥ % % ol 3 3 %
¥ 3 % #% % % 3 i

#H% s 3 % s ¥ Basemn Tanxs

Volume 4 Number 2 48/39/38 February 1979

Newsletter of the SR-52 Users Club
published at
9459 Taylorsville Road
Dayton, OH 45424
TRANSPARENT CROM CHECKS (58/59/PC)

Mark Matlock (1077) has found a way to have a CROM-dependent RAM
program check for the presence of the required module without being
forced to print the module ID (via a CROM check routine call). His
approach is to identify absolute subroutine calls unique to each module
such that when the correct module is present, the call is transparent
(nothing happens), but when any other module is present, the call
causes a halt with error condition.

Mark developed a sdeme applicable to 5 of the TI CROMs, choosing
combinations of Pgm nn and SBR mmm which would be out of bounds for all
but one CROM. I've extended Mark's approach to cover the first ten
CROMs: 19-588, 22-397, 15-214, 25-246, 30-017, 23-204, 21-441, 12-375,
11-578, and 20-306 respectively, where nn-mmm means the sequence Pgm nn
SBR mmm. As new CROMs become available, check sequences would need to
be revised, a process which can be approached as follows: 1) Construct
a table containing the highest step number containing a rtn instruction
for each Pgm of each CROM, 2) Starting with the highest numbered Pgm
(Marine Navigation (#5) has the most so far) locate the CROM with the
largest rtn-step value, and assign this Pgm and SBR to that CROM, 3) Do
the same for remaining Pgms, in descending order, skipping those for
which the qualifying CROM has already been assigned a check sequence.
This procedure produced all ten sequences for CROMs 1-10 at the point
Pgm 11 was reached, but if there were more CROMs, it would have failed
to work if Pgm 1 had been reached, and there were outstanding assign-
ments yet to be made. In such a case, judicious "eyeball” assignment
exchanges might accommodate a few more CROMs.

Users will need to find a different approach to allow RAM programs
using only those CROM routines common to 2 or more CROMs to operate when
any one of the required CROMs (but no other) is present. In any case,
the more CROMs being considered, the harder it will be to find a com-
plete assignment set.

Custom CROMs present an interesting situation: While there is no
reason to suppose that one developer's CROM ID would be guaranteed to
be unique among all CROMs (possibly compromising a straight forward
CROM check), a custom CROM can be treated like any other with Mark's
approach, success being dependent only upon the degree to which for all
CROMs concerned, the Pgm tags for long programs are uniformly distri-
buted.

T T T e B B S e

The SR-52 Users Club is a non-profit loosely organised group of TI PPC owners/users
who wish to get more out of their machines by exchanging ideas. /Nctivity centers

on a monthly newsletter, 52-NOTES edited and published by Richard C Vanderburgh

in Dayton, Ohic. The SR-52 Users Club is neither sponsored nor officially sanc tioned
by Texas Instruments, Inc. Membership is open to any interested person: $6.00
($10.00 US abroad) includes 6 issues of 52-NOTES; back issues start June 1976 @

$1.00 each ($1.67 abroad).

MORE ON CROM RNG LIMITATIONS (VANlp4)

Don answered my question, finding an integer seed (in the 0-199017
range) which produces a cycle shorter than m. It turns out that an
initial seed of 30073 produces repeating sequences of length 1897 after
the first 57 RNs. The seed which generates the 58th RN is 69740.816819
31, and following the 1954th RN the resulting seed is the same real,
and the cycle repeats for each succeeding string of 1897 RNs. So at
least one initial integer seed (and probably many more) will produce
cycle lengths less than m.

In response to a query by Don, TI suggests that "In order to
achieve 5 full sequence of 199017 numbers in ML-15, ST-02 and MU-12 ...
Step 1 of the user instructions must be replaced as follows ...",
which amounts to writing 26-70 step programs which call selected por-
tions of the CROM RN routines. The net effect is to guarantee that
(axp*c)mod m is an integer before it is used to generate Xp+1. This
is accomplished by putting Int(rg+z) into Reg 9 before calling SBR D.MS
(A for MU-12). (rgmeans the contents of Reg 9).

It turns out that you can do about as well or better, memory- and
speed-wise by just writing the revised 0-1 RNG into RAM. With a few
shortcuts and if truncation to 5 digits isn't required, it might be
written: LA R10 X R9 + R11 = + R12 = INV Int X xXt R12 + .5 = Int
S9 xXt ritn, and run with r1g=24298, r11=99991, and r;,=199017. But,
ofcourse, don't bother with any of this if it doesn't matter how long
RN sequence cycles are.

Cycle length is only one of many RN-string characteristics of
interest to users. Within a cycle, or fraction thereof, various sta-
tistical measures such as mean, standard deviation, runs, and the var-
iously defined distributions along with considerably more arcane mathe-
matical tests can be of interest. Michael Shunfenthal (1078) has been
investigating some of the elementary properties of RN strings produced
by the TI routine, and notes that histograms made on RN strings pro-
duced by chained seeds show less "randomness" (larger differences be-
tween populations in arbitrarily chosen ranges) than for RN strings
where each element is generated by a new integer seed. But the seem-
ingly better approach requires generating the integer seeds by some
means, and Michael arbitrarily took sequences of the form: n, n-1, ...
0, 2n, 2n-1, ...n, 3n, 3n-1, ...2n, ..., which although not randomly
ordered themselves, produce even distributions of RNs by frequency of
occurrence. But unfortunately, histograms don't measure run lengths
(monotonically increasing or decreasing trends), which for this approach
are consistently 8-10 decreasing elements (runs down), making such
sequences fall a runs test. With this approach, then, the produced
RN string can be guaranteed not to repeat (since each RN is produced
by a unique seed), but run trends would tend to be as predictable as is
the method for choosing the integer seeds.

But passing a whole battery of tests may not be the best indicator
of a good RNG. The best one is most apt to be the shortest and fastest
whose RN strings pass those tests critical to a specific application.

On the other hand, as Knuth suggests somewhat tongue-in-cheek: "Perhaps
the main reason for doing extensive testing on RNGs is that people mis-
using Mr X's RNG will hardly ever admit that their programs are at fault:
they will blame the RNG, until Mr X can prove to them that his numbers
are sufficiently random."

52-NOTES VA4N2p2

SPECTIAL CASE PROCESSING (V3N8p5)

John Van Wye (982) has cut Bill's execution time almost in half
with the program listed below. John rearranges the original equation
to: (a3-100a) + (b3-10b) = -(c3-c), which presents 3 advantages:

1) All the f(c) terms are even, 2) There is no need to set b or ¢ = 8
or 9, and 3) f(c) is never negative. 1) means that only f(a) and f(b)
both even or both odd need be summed for comparison with f(c¢); 2) is
confirmed by inspection, and reduces sums and comparisons; and 3) eli-
minates the need for comparisons when f(a) + f(b) is negative.

In devising a way to synthesize a positional-format solution,
John found that the units place (c¢) could be satisfactorily approximated
by fix 0 rounding of the cube root of f(c). The tens and hundreds
places (b and a) are calculated from the b and a pointers.

TI-58/59/PC Program: Solutions to a3+b3+c3=100a+l0b+c John VanWye (982)
User_Instructiong: Run by pressing A; results in 69 seconds,
Program Listling: P '
000: R¥2 * R¥3 = xXt 336 + xGEt 046 210 + xCGEt 046 120 + xGEt 046 60
030: + xGEt O46 24 + xXGEt O46 6 + xGEt 046 0 x=t 076 2 SUMZ2 Dsz 0 000
056: 4 SO0 8 INV SUMOZ2 2 SUM3 Dsz 1 000 Ifflg0d 112 Adv R/S + y¥X 3 1/x
080s + 10 X (R2 ~ 4) + 100 X (R3 - 12 = Prt S22 0 x=t 146 GTO 049 4
113: S00 5 S1 S02 13 S3 Rst LA 4 SO S02 5 S01 12 S3 Stflgd Fix0 GTO
144: 000 R22 + 1 = Prt GTO 049
Prestored Data:
gg: Ol~§ -12 =3 24 75 156 273 0 -99 -192 -273 -336 -375 -384 -357 -288
i =17

Although no one has yet responded to the generalized problems sug-
gested in V%N? 3, Gunter Merten (750) has looked at problems of the
form: a3d+bl+c3= 10%a+102b+c where a is in the 10-39 ran%e and b and c
in the 0z99 range. Gunter also extends this to a +p3+cI= 100a+103b+c
and = 108a+ 10%b+c, with a,b,c range limits increased each time by a
fac%or og ten, He offers sample solutions of 163+503+333= 165033,
1662+500 +3333= 166500333, and 16662+50007+33333=166650003333,and chal-
lenges PPC users to devise efficient approaches to finding all the sol-
utions.

EFFICIENT DATA PACKING (V2N1llp5)

Arthur Ehrlich (969) poses a requirement to pack and unpack up to
8 integers in the 2-24 range per register. This is the maximum possible,
using the V2N1llp6 formula: Int(l2 + log25), but in order to provide
for random/multiple stores and recalls, a more elaborate approach than
outlined in V2N11l would need to be found. ‘

The Math/Utilities MU-08 program might be used as a start. What
it lacks is the means to change the radix of the pack/unpack arithmetic.
Members are invited to try revising MU-08 (or to try another approach
which produces as general-purpose a routine) so that n-digit numbers
whose maximum values are less than the base ten maximum can be more
efficiently packed. I doubt that it will be easy: MU-08 does a lot of
data manipulation to allow random and multiple stores, recalls and
exchanges. Associated with each input datum is a key (V3N2p3,4) which
TI refers to as a pseudo register (PR) number, which may be any of 1,2,
... n where max n is determined by field sizes and the number of avail-
able full data registers. To specify the packing format, key a.bc...,
press A, where a 1s the number of data to be packed per register, and

52-NOTES VANZp3

b,c, ... each specify a ficld width in the 1-9 range for each of the a
data. The total of b+c+ ... must be less than 14. For example, a
3,246 format specifies 3 data per register, the first up to 2 digits
wide, the second up to 4 digits, and the third up to 6, adding up to

12 (one less than the max). To store a datum, key it (a positive inte-
ger), press xXt, key the PR number you wish to be its "key", press B;
to recall, key the PR number, press C; to exchange, key the new datum,
press xXt, key the PR, press D, and see the old one displayed. For a
variable radix version, I expect practical considerations would require
all gata fields to be the same length. Anyway, here is a listing of
MU-08:

000: ILA S1 rtn ((CE - 1)+ R1 SO Int INV SUMO) S2 (INV Int X Rl Int)
031: S3 Op23 4 SUM2 R¥2 INV Int S#*2 (INV Dsz3 067 (RO X 10) S0 Int
060: 1INV SUMO + GTO O45 0) INV Log D.MS S3 P#2 rtn LB SBR0O05 R*2 Int
085: 1INV SUM¥2 (ExcO X 10) Int INV Log DMS Prd0 Prd*2 Prd3 ((1/x X xXt
110:) (INV Int + xXt) Int + ExcO + R¥2 INV Int) S*2 R3 INV P*2 RO
136: rtn LC SBRO05 (R*¥2 INV Int X R3 INV P*2 (RO X 10) Int INV Log DMS)
165: Int rtn LD SBROO5 R¥*2 Int INV SM*2 (ExcO X 10) Int INV Log DMS PO
191: P3 P*¥2 (1/x X xXt) (INV Int + xXt) ((Int + R¥2 INV Int + RO) =+
219: R3) Exc*2 Int rtn Note: Pn=Prdn and P¥*n=Prd*n, n=0,1, ...9

EDITORIAL: LOOKING AHEAD

Since I'm currently about out of those member-inputs which I con-
sider worthy of publication, this will be the last regular monthly 52-
NOTES (unless a lot of good material starts arriving soon: Useful
discoveries and inventions, clever routines, and programs of broad
interest which demonstrate new (better) programming techniques). In
the past, there have been occasions when I've almost set aside real
gems because descriptive material was poorly expressed or nonexistent,
and I expect some goodies have been languishing unpublished because
their value escaped me on first glance. So if you've sent me something
you feel is likely to meet my criteria, but which hasn't yet seen print,
let me know. But please make an effort to establish its originality
(scan back issues of 52-NOTES) and identify the important new features.

It may be that after almost 2 years, we've just about covered the
newer PPCs (there didn't appear to be much more to be said about the
52 or 56 after they were 2 years old, or so), and so far no news of any
58/59 or 57 successors has come to my attention. While the long-awaited
TI personal microcomputer may make its debut some time this year, there
are indications of more schedule slippages. In the meantime, it will
help me to decide whether to broaden 52-NOTES coverage to include

micros, if each of you will convey your interest: pro or con, and
in which machines. Even though there is currently a lot of micro cov-
erage in a growing proliferation of periodicals, perhaps there is an
unfilled place left for 52-NOTES' style and technical level.

In any event, it is my intention to continue publication, but on
an irregular schedule if need be, determined by and large by the rate
at which I receive good inputs. At such time as the scope settles down,
I'11l consider Club and newsletter name changes. Any member who wishes
to terminate his membership now may send me a SASE (less stamps for mem-
bers abroad) for a refund of outstanding contributions. Those wishing
to continue should consider their memberships linked to the number of
issues received after V4NZ2. I suggest that you record the number of
issues due you now, and to Dsz it each time you receive a new issue.

52-NOTES VAN2ph

Program the zero-skip to remind you when to contribute again. The ori-
ginal contribution rates continue to be adequate, and back issues will
be made available at the same rates, for the foreseeable future.

Let me close by saying that I continue to enjoy running the Club
and editing and publishing 52-NOTES, and hope that inputs will increase
to the extent needed to continue (or get back on) a regular monthly
basis.

INTERPOLATION AND EXTRAPOLATION

There are many occasions in science and engineering when for a
given set of data points there are requirements to interpolate (find
additional points in between the given ones) and/or extrapolate (find
points outside the span of the given set). In both cases values for
the added points are generally determined by one of two means: 1) A
curve is generated which passes exactly through all the given points,
or 2) A "best-fit" curve is generated to pass close to the given points.
In cases where there is reason to believe that all given points are
"correct" (very accurate), it may be best to force an exact fit
through them, and this can be done for n points by a polynomial of
degree n-1, On the other hand, in cases where there 1s significant
noise in the data and/or many points, the second way is apt to be
better, and the method of least squares is commonly used.

Bill Skillman (710) has written a short fast Polynomial Least
Squares Fit program to which I added a transparent module test (V4N2pl),
and which fits an nth degree polynomial to n+l or more data points for
n in the 1-6 range. It runs on a 59, either with or without the PC,
but with it, without tags, to hold program length down to one card-
side. Members able to squeeze in tags without overflowing to another
card-side are invited to share their approaches.

TI-59(PC) Program: Polynomial Least Squares Fit Bill Skillman (710)
User Instructions: Key order n (less than 7), display flashes if ML

module is not connected; press A; key X,y pairs: xi, press B, yi, press
R/S, repeat for at least n+l pairs. Press C, see a0; press R/S, see

ai, repeat for i=1,2, ...n. With printer, order and inputs are con-
firmed, followed by an unsuppressable determinant, and then the coef-
ficients a0, al, ...an. To interpolate or extrapolate, key x, press

E, see y displayed and/or printed.
Program Listing:
000: TE Pgm7 C rtn LA Pgml9 SBR588 CMs S7 Prt X (CE + 5) + 11 = S00
029: 9 Opl7 1 S8 rtn LB S2 Prt RO SO4 9 S5 R/S S3 Prt Sm¥4 R7 S6 SO1
060: 1 X R2 X SM*5 xXt Op25 R3 = Op34 SM*4 xXt Dsz6 061 X R2 = SM¥*5
088: 0Op25 Dszl 082 0p28 R8 rtn LC Op38 R7 + 8 + S1 R7 S4 S2 X2 =
118: SM2 R7 SM1 S3 Op23 R*1 S*2 0p3l Op32 Dsz3 128 Dszld 120 Op27 Pgm2
148: C RO S4 R7 S2 1 Pgm2 D R7 x2 + 7 = S1 R5 xXt Op2l R*1 INV x=t
178: 172 R7 SM1 Op25 0 Exc*4 S#*1 Op34 Dsz2 161 Pgm2 E 1 Pgm2 A' R7 SO
208: S4 Op34 5 S2 Pgm2 R/S S*2 SBR236 0p22 Dsz0 215 6 Opl7 Adv Adv
235: 1rtn O0p8 R/S rin

The program which follows, fits an nth degree polynomial to
exactly n+l data points, following an algorithm and parts of a FORTRAN
implementation given in DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYS~
ICAL SCIENCES by Philip R Bevington; McGraw-Hill, 1969 pp264 and 267.
Incidently, chapter 8 of this book describes the least squares fit
method.

52-NOTES V4N2p5

TI-59(PC) Program: Variable Spacing Interpolation and Extrapolation Ed
User_ Instructions: Key x1, press xXt, key yl, press E; key x1, press
xXt, key yi, press R/S, repeat for i=2,3, ... LT 11. Initiate process-
ing: press A. To interpolate/extrapolate, key x, press C. With printer
inputs are tag-confirmed, and outputs tagged; either with or without
printer, inputs are followed by i displayed;processing ends with zero
displayed, and each interpolated/extrapolated y is displayed following
C processing.

Program Listing:

000: LE CMs S21 S50 xXt S11 12 S00 22 S01 1 S02 44 Op4 R11 Op06 45 Op4
033: R21 Op6é L1' R/S S*1 xXt S*00 44 Opl4 R¥0 Op06 45 Op4 R¥1 Opb6 Op20
063: Op2l Op22 R2 GTO 1' LA 31 S4 R2 S5 R12 - R11 = S03 11 SO L2' R*0
097: - R11 = + R3 = S*4 0Op24 0p20 Dsz5 2' R2 - 1 = S05 2 S8 R21 Sk1 L3
130: 1 S52 0 S51 R8 - 1 87 = S9Q I4' R8 - R7 = 306 30 + R8 = S4 R*4 -
166: (30 + R6) S4 R*4 = Prds52 40 + R6 = S53 R¥53 + R52 = INV SM51 Op27
199: Dsz9 4' 20 + R8 = S53 R*¥53 + R52 + R51 + (40 + RB8) S53 0 = S*53
232: 0p28 Dsz5 3' CLR Adv R/S LC xXt 67 Opk4 xXt Op6 - R11l =+R3 = S54
260: R41 S52 2 S6 R2 - 1 = S5 L5" 1 S52 R6 - 1 = S09 1 S7 L6' R54 - (30
297: + R7) SW R¥4 = Prd52 Op27 Dsz9 6' 40O + R6 = S53 R¥53 X R52 = SM51
329: 0p26 Dsz5 5' 45 Opl4 R51 Op6 Adv Adv Adv R/S

Record with turn-on partition in Banks 1 and 2.

TIPS AND MISCELLANY

Off-The-Shelf Custom CROMs_(VA4Nlpl): Bill Fagerstrom (692) notes
that Datalab, Inc Box 292 Haverford, PA 19041 is marketing a custom
CROM for securities traders called the Options Analyst Datalab Mod-1
Library module. The module, keyboard overlay, users manual, and a 6
months newsletter subscription sell as a minimum package for $225.

Euclid's Algorithm Routine_ (V3Nllp5): Carl Seel (328) notes that
the EE INV EE rounding doesn't properly process gsome (relatively prime)
inputs. In such cases the mantissa is too large for the EE (with turn-
on fix) to round, and Carl suggests substituting fix O D.MS INV fix.
However, D.MS is noticeably slower than EE, and it turns out that the
V3N1lp5 routine as written appears to work for all cases if run with a
fix 0 display.

Forced Card-Read(59): John Allen (104) notes that contrary to a

— o — e e bt e e ™ L e

Friendly Competition(V4Nlp6): Philip Morey (1129) worked out
Jared's 9-step solution independently, and shows that HP machines can
also produce a 3 in 9 steps: eX eX ENT x2 eX xXy y¥ Ln Ln.

Membership Address Changes: 954: 311A San Francisco Blvd San
Anselmo, CA 94960; 959: 620 Iris Ave #410 Sunnyvale, CA 94086; 1003:
5225gth Ave Bethlehem, PA 18018; 1056: 315 Tumblebrook Slidell, LA
70 .

Correction(V3N12p2): Jared Weinberger (221) notes that there is
an INV missing at step 707 (between Op 8 and Iffl).

Print Borders(58/59/PC): Richard Snow (212B) suggests using the
exchange symbol (print code 62) in the construction of vertical lines.
This, in conjunction with the dash (code 20) for horizontal lines, and
the + (code 47) for corners or intersections makes an attractive rec-

tangular border, or tic tac toe grid.
52-NOTES V4N2p6 (end)

