*TI PPC NOTES *
¥* #*

F 36 36 36 36 36 36 36 3 3 K36 K3

NEWSLETTER OF THE TI PERSONAL PROGRAMMABLE
CALCULATOR CLUB.

v7n9, 1982.

9213 Lanham Severn Road, Lanham MD 20706, USA.

. A W S . SR S e D D AR W W > ap o S e W A S = S AR D S AP e R AP e S e e AR D M M e NP G S S S MR =D MR AL WD R 4 AP M MM MmN SR e e W 4P WD M s o se e N

Dean Friends, you are too well aware of the fact that there is a time for coming and
another one for going. If you overstay your welcome, you risk to become a terrible
bore. So, what that in mind, 1 have decided to retire as the editon of the Notes, and
2o give a young and dynamic new editorn a chance to show off his stuff. This means I
will Leave you in the able hands of Palmer O.Hanson Jn., extremely well-known in these
pages as one of the most prolific contributons. I can't think of anybody more capable
of continuing the work we stanted three yearns ago. I am confident that under his gui-
dance the Notes wilf bLoom as nevenr before.

0f cournse, T will not completely disappear grom the scene. I will, s0 fo say,
atand £n the wings and perform any duty requested of me, giving encouragement and
making this way a general nuisance of myseld.(!!) I suppose one of my duties will be %o
keep contact with the many European clubs, unless somebody wants to take over zhe
duty of transfating newsletter anticles grom Danish, Swedish, Outch, German, French
and Spanish.{don't go tell anybody now that 1 speak all of these fLanguages, please. I
fust translate them, that's atl.) ,

To mosZ of the membens, the actual mechanics of the transfer will be completely
transparent. The venz Last issue (the next one, in November) will contain a subserip-
tion 4oam that will have your mailing Label pasted on it (1o eventually correct your
name or address) and it will have Pafmern's addnress on it, to tell were to send it to.
T will send Palmen all the as-yet-unpublished manuscripts and business will go on as
usual. 14 Palmer has some ideas how to nun the newsfetter, and I am sure he has some
innovations up his sfeeve, he will certainfy expound them in the very ginst issue of
1983. 1 hope you will all stick with him (a3 you were Atuck with me forn three years)
in this coming year, the exciting year of the TI-88. I hope you will continue sending
those fantastic articles that have made the Notes the most readable newsfetiern 4in
the business. In one sentence, I hope you will support Palmer in any way you can. I
centainly will. :

From your many Lettens 1 head that you are all hungry gfor some concrete news and
details about the TI-88. I have included quite a Lot in this issue and 1 will thy to
publish some more in the next one. 1 have tried to concentrate on the features not
found in the 59: new ways of printing, HIR control, prompting and on defining varia-
bles and inputting them. I also include a shornt and very preliminary speed check of
the various functions. It will at
Least give you a grosso modo Lidea
as to what speeds %o expect. I trhans-

IN THIS ISSUE:

Lated several simple, but slowly exe- PRINTING ON THE rg-as, Maurice Swinnen 2
euitl - DUNGEONS AND DRAGONS, Dave LeiSingseecees
h ng, T1-59 """92‘1",‘6 and found on EXECUTION SPEED ON THE TI-88, M. Swinnen 4
the average a speed Lncrease 04 two SUPERCHECKSUM, erratum, Bjdrn Gustavsson 5
to threefold. Usen-griendliness has HIR CONTROL OggTHE T1-88, Maurice Swinnen g
(SUPERTEST TI-59, Dejan RIStanoviceese--
anza/.se4 bg‘a/t Zg.az.s/t a tqnﬂald 640'{04‘ NEWCOMER'S CORNER, BOb FIUIt .eveveneesosasss 12
The hightight in this issue: with- TIBBETT'S CONJECTURE, Lester Tibbetts 13
out a doubt Defan Ristanovid's TI-59 PROMPZI:(; ég THE TI-Baswuaurice Swinnen 12
H H DEFIN! ~88, Maurice INNeN ...eecacnvesens
SUPERTEST' 16 you pass 'thM one W»(/th. TRUTH IN LENDING, erratum, Jorge Valencia ... 16
a minimum of 70% you know the 59 and FOR SALE « v vvmeerneenneenmseansaannesnenanean 16
you may ghraduate Lo the §§. LADDER NETWORK ANALYSIS ...cuveccccncuccnnns 16

Maurice E.T. Swinnen.

Pkl
Ifr
Pri
¥
Fri
Oo0s "/
Qoo9 =
a1 B
IR
Qoiz AR
O0iz o
oaid =
ooais
Q01 %
oaiy o«
Qo1s =
oo1s =
o020 =
gozi o«
oaozz =
oozs =!
ooz4
ooz B
ooz2e A
o2y L
oozs A%
Frt
Hdw
R <
Mok
Hor
Mok
Mok
C= Fi134.4
1
4
C= E5&308
C= %4.14

LE RN

Lt et
" =
[]

Tipen

P~

Pote |
b

[a S £N
DIl

P~

LI
[s LR}

(N]
o]

EEd b €1

qam

TI PPC NOTES V7N9P2

PRINTING ON THE 71-88.- Besides the PRT command, both from
the keyboard and under program control, the TI-88 has a
couple of specialized forms of printing of which the first
one is roughly equal to our familiar 0P & 0P 6 oprinting,
but of which the second one is far superior to anything we
have seen up to now. But even the simple PRT has been im-
proved in that it will print anything you put in the dis-
play: alpha characters or numerics, for a total of 16 co-
lumns. Alpha <characters cannot be stored in data regis-
ters, tough, as in the 59. They will have to written in-
line in a program. -

Now with respect to the two forms of specialized prin-
ting: The first one requires you to call or bring other-
wise the numeric result in the display, after which you
simple write up to 4 alpha characters in-line and follow
everything with a PRT command. The alpha characters will
be printed and displayed in the first &% columns on the
left and the numerical data will occupy the rest. This is
preferrable above 0P 4 OP 6 printing in the 59, as we now
can show much clearer results, such as (for wexample)
"10T= 1234.56." The fact that it is also displayed (for
printer-only use you could replace the PRT by a PAU or an
R/S) will encourage a lot of people to use the calculator
all by itself, without having to purchase a printer right
away.

The second and much more powerful form of printing 1is
called the BLOCK function and is similar to the PRINT
USING command in Basic. It allows you to put a few alpha
characters in the display, follow it with a predetermined
number of digits which are being pulled from the numeric
register (which contains the result of the computation),
again followed by some more alpha.

The sample program on the left demonstrates how this
block function may be used and sometimes abused. We have
16 columns at our disposal. The first four are occupied by
alpha (C, =, a space and $). Then we placed 7 blocks, to
pull 7 digits from the result. And to top it off we added
three more alpha characters (BAL). We used only 15 co-
lumns, so we could have placed one more block. Up to the
first three samples, everything is OK. But in sample # 4
the +14 exponent is missing, due to space limitation. In
the fifth sample the error committed is much more severe.
Here not only the exponent is missing, but the number it-
self is severely truncated.

Note that the Dfn function, wused twice in this sample
program, is described somewhere else in this issue. Suf-
fice it to say here that when the <calculator encounters
this function, it stops and waits for your entry of data.
Data will be stored in the corresponding letter register.
The "define" function is very similar to the INPUT state-
ment in Basic.

The way printing is provided for in the T7I-88 is de-
finitely an improvement upon the arrangement in the TI-59.
But what is unfortunate is that TI elected to come out with
a 16-column printer, as opposed to the 20-column one we
were using aiready. That is not exactly what I would call
progress. A 32-column printer, such as the one used with
the TI-99/4A home computer would have been ideal.

TI PPC NOTES

DUNGEONS AND DRAGONS: Dave Leising
brings to my attention the marvelous
program called MISADVENTURE that ap-
peared in the Sept/Oct 1981 issue of the
PPX newsletter. David S. Lane, who wrote
this masterpiece surely has to be con-
gratulated. I once tried but gave up. I
concluded that there were not enough
steps and/or registers available to do
it with. Dave Leising came to about the
same conclusions when he and Ken Ward
tried it. Now this David Lane did it
with 4 registers and 16 steps to spare!

V7N9P3

A real "fugue for the TI-59."

So, Dave Leising opted for the next best
thing to do: Write a solution to this
game. Dave says he suspects that this is
not the only solution possible. As such
a solution program executes rather
slowly Dave wrote it in Fast Mode. The
program fits on four card sides, i.e.
two mag cards. Everybody who remembers
his war movies will easily decipher the
words on top of the print-out as meaning
"ferry zekret."

T373ITITRAV. i 2723354100, &3 I
5155 2000, a5 L1708 £4 oog oo | 042 01 01
2217231724, 08 41003100186, £5 a0L 00 0 D43 73 RC#
F0T3ITITETI. o7 25413033, BE ooz oo 0 D44 01 01
2. 05 3600131420, &7 003 00 0 045 &3 0P
0. a3 45353260031, 55 oo4 00 0 Q46 01 01
0. 10 42727, 3 005 26 PGM n47 &9 Ug
a. 11 . £ 70 oo 0z oz | D48 21 2i
13tedd, 12 i7 U41Dnu0 71 0oy F1 SER gi# 73 RCs*
1636, 13 3TIZ003132. = o0z 02 oz | D300l Ot
D17 36, 14 3__;gn1.uo. T3 oos 330 39 g:l 53 DPﬁ
H1’ﬁnuu. is 3 z T4 gig 09 9 ?:% 'é Qz
210021, 1€ o Ta ottt o0 o Q;J £ Dg
J:DDIb. 17 3324444503, 7E 012 Te LBL | 934 =t 2
32 3“5=0n1.. 1a 14131526, i 013 11 A 033 i RC#
"’”Eﬂnnu. 13 43001600, T8 014 22 Iwy | B9s 01 01
?1°415?°1 20 3100144500, 73 015 S8 FId nse 83 OF
30132224, 21 3324444502, & 016 2z Iy | 038 03 03
1500221737, 22 31003313, &1 G417 57 ENG | 939 =3 OP
2E00261745, 23 pnu:;?1 22 012 01 osg 21 2l
200141315. 24 70031, a3 119 23 FRT y@g T Rﬁ*
260043003 2! g 020 25 CLR | Qee 01 01
ﬁ“333541 26 85 21 21 pes | 263 63 OP
16323235. 27 26 bz2 9% FRT | Ued 04 04
2013222415, 28 a7 023 25 CLR H53 69 Dg
221737386, 29 as 024 31 p-S 066 21 21
ZE174503. 20 a9 125 3% FRT use 63 OF_
17003732, 31 20 026 25 CLR | D68 05 05
3532323000, 32 91 Qg7 31 Rpeg | DE3 97 DSE
41002217327, 33 028 %9 PRT oFo o0 0o
1413;31?. 34 gzy 3g ADpy | 71 0000
14121526 25 o200 93 ADY Qrz 43 43
1600170022, 36 031 98 ADY | 973 06 &
1737003532, 37 032 01 1 074 &3 OF_
217004100, 33 033 00 0 DLS é? 13
2217370000, 39 £9 OF dré 38 ADY
2241210014, 40 “4STRENG GEHEIMS D00 17 17 | o077 23 ggﬂ
1315260016, 41 gz 2 Urs 9% RADV
14131526, 42 LORD CARDS FRESS E 3702 2 ar3 23 LLR
43004300, 43 M H W TO DOOR E TO 3 4z =70 | 020 31 Res
3100331336, 44 NICHE MRGIC GETS KEY 3% 00 a0 gEl Bl 0
3600152724, 45 t BACK W N THRU DOOR 040 04 4 82 00 a0
2121003100, 48 MAGIC GETS KEYZ E TO 041 42 sTD | U3 2% 2%
1513221700, 47 ROOM U GET CAGE BACK
1424351600, 45 I E GET R%PEHUkGETM
1600373200, 439 GUN BACK DI BACK b .
1513421700, 50 W FASS CLIFF H CAGE - |
1600221737, 51 EIRD I TO CAYE I GET Chit-Chat!
3362600, 52 MASK D W GET GUM MA-
52 53 GIC GETS CAMDY BRACK Pssst! Nice pro-
54 E_BACK U U U N THRU gham, you know!
3 22 S And verny eenter-
2 Soozz, BE {35 M KILL SHAKE U
17373260015, 57 TO HOOK E MAGIC GETS hesteeng!
1331184500, o8 PIAYZ2 BRCE W I H BY
41315260 53 FINY1 H PASS GHOME M
1700141315, &0 THRU GATE M TO GET
ZE00410041, £1 pedoraaeGOLDatrEeRas
41003100, e

t
i
3

e}

o

t

[E s R B
-
YT

L

T

[N o]

o f LI e

[N
] lzl-f‘_l

]
1

R e)
g N
R R T R el o S)

el D
oI e e Ery R g

e

[¥

2=
odge
anzd

oozo

aoazs
0040
o041
g =
O0ds
Odidd
0045
Odde
O047
O0gds
Ongs=
ooash

ooss
anos

P R - I TR - R S Y o

AN

]

g b

e B = B
P

P
A

Nl
1 e

LR
2

D
I T m

i o

o
A

ot

[I Y |
T

T T i e i
= T

e

1%

L]

(a

TI PPC NOTES V7N?P4

EXECUTION SPEED ON THE TI-88. Maurice Swinnen. I ran a

preliminary speed check on the 88 and compared it to the
execution speed on the 53. The method I used is shown in
the program on the left.

When I want to check the speed of a computer using
Basic, I write something like:

100 FOR I= 1 to 1000

110 (function to be timed)
120 NEXT I

130 STOP

I first run the FOR-NEXT loop without the function to
be timed and check the time it takes to complete 1000 runs
through the loop. Next I insert line 110 with the function
to be timed, such as, for example, LET A=25, or sin(A), or
SQR(A), or what have you. Then I run it again and time it.
I subtract Time(1) from Time(2) and divide by 1000 to get
the exact execution time of the function. It usually will
result in the number of milliseconds needed.

In calculator language we can do something very similar
by using the DSZ command. Look at the program on the left.
At line 0018 is says: DSZ A. On the next line it says: GTO
0017. This means: DSZ register A. If the contents of A is
not zero, go to line 0017. If it is zero, jump over line
0020 and continue. Line 0017 contains CLR, which is the
function to be timed. I inserted here one or more lines
with functions to be timed, as shown in the table that
follows.

This program allows you to enter the number of loops
you desire: 100, 500, 1000. The more loops, the higher the
accuracy of timing, but the more tedious the job. When you
enter the number of loops, say 100, and press E, the num-
ber ends up in register A. Then that number is printed as
N= nnn. Next the internal time is called and converted
to decimal time by means of OP 28. That result is stored
in register C. Then the time loop, described above, is
performed. So we know exactly when the time loop started.
It is stored in C. After the time loop is finished we call
the time again, convert it to decimal time and subtract
the starting time from it. Because the number of loops had
to be stored in A and subsequently DSZed, we had it also
stored in B at the beginning. It is now still available to
used as the divider to divide the difference in starting
and stopping time by. The result of that division is the
exact time it took for the timing loop plus the function
to be timed, here CLR. BAs we had already a prior run of
the timing loop alone, without the CLR , we mentally
subtract both times form each other to obtain the
correct time of the function alone. In my calculator the
timing loop alone ran consistently at 86 mSec. From the
example you can see that CLR took 97 mSec. Thus, CLR took
97 - 86 = 11 mSec.

In line 0035 the OP 29 converts decimal time back to
HH.MMSSd time. The rest of the program simply prints the
result as mS= nn.dddddd.

The reason I give this method in such detail is to al-
low others to duplicate this method and fineetune execu-
tion times some more. It is possible that we will find
even faster times in production models of the 88. The cal-
culator I have is a prototype (# 0000285) which, according
to the experts in Lubbock, is not fine=tuned at all.

TI PPC NOTES V7N9p5

FUNCTION TIME on 88 Equiv. on ! FUNCTION TIME on 88 Equiv. on
on TI-88 in mSec 59 (mSec) ! on TI-88 in mSec 59 (mSec)
i
Nop 4 15 1 LBL A 18 65
RCL Z 18 132 ! STO+ 2 45 132
STOX Z 60 182 ! LOG = 640 220
LN = 620 140 1 1007 70 133
Vi00 85 143 ! STO IND Z 60 162
STO+ IND Z 70 192 ! STOX IND 2 110 212
STF 0 18 96 1 IFF 0 20 156
INV STF 0 20 172 110! 615 3000
69! 610 15000 ! INT = 25 40
IF>Z GTO 0024 80 328 t INV INT = 25 56
DSZ Z GTO 0024 78 338 ! SIN 30 = 600 452
Ccos 30 = 600 452 ! TAN 30 = 430 342
302 30 P-R 1700 1282 ! INV SIN .5 = 530 468
303 30 R-P 950 1298 ! INV COS .5 = 530 468
xt 5 = 215 412 ! INV TAN .5 = 355 412
1.5 PAU 1525 -_— 1 CE 9 15
i _CLR 11 17

From the foregoing table we see that the common functions, such as STO and
RCL are lightning fast. Even all the indirect register functions are almost
three times as fast as on the 59. The flags again don't take any time
whatsoever. Also the comparisons zip along at a better than fourfold increase in
speed. The trigonometric functions have not improved in speed whatsoever and
neither has the P to R and R to P functions. All in all, it is going to be a
worthy contender in future challenges with the HP club.

To see if my method was in the ball park, I checked my loop time versus the
pause time. The latter can be set by means of an OP code. I ran a consistent 25
mSec over the set time, which could quite possibly be the overhead time the PAU
command needs. Or it could also be the error I made in timing my loop. Future
measurements will tell. I hope this method will be refined.

But, as always and as I often reiterated in these pages, the proof is in the
pudding. So, let's write some speedy factor finders, calendars, pi to 1000
places and other "geschwindigkeitsprogrammen" and let's show that we can make
this baby sing!

SUPERCHECKSUM, Erratum. Bjorn Gustavsson and I am convinced the superchecksum
tells me that ﬁ§=;gﬁgaed to confuse me program works now perfectly.

completely in last issue (v7n7/8p8) by So, please +try it again and let me
sending me an erratum at the last know what you think of using this one as
possible moment, before the issue was THE offical checksum program of the
poured in concrete. He send me an error PPC NOTES.

in the erratum. All the addresses should This correction was obviously needed
have been 3 higher. 5o, the seguence to because without it, the FIX O EE
correct the bug should be: steps 163-165 will round the exponent to
GTO 159 LRN CLR RCL 35 LRN 1 WRT (insert one significant digit. This is because
card) The LOG is located at step 162 and of the EE mode. Therefore the one's di-
the error condition is cleared at step 0it will be lost. Inserting CLR befaore
183. recalling R35 will remedy this by clea-

I (the editor) tried this correction ring the EE mode.

TI PPC NOTES

HIERARCHY REGISTER CONTROL IN THE TI-88.

The calculator has 13 instructions that
allow you to access the 63 hierarchy re-
gisters (HIRs), addressed (00 through 62,
either directly or indirectly. Of cour-
se, before we want to do this, we should
have a good understanding of what these
HIRs do and how the digits. internally
are positioned and what their individual
meaning is. TI has published guite a lot
this time. But don't be lulled into a
soft sleep either. The 63 HIRs are the
ones TI chooses to leave unlocked, so we
can access them. I have good reasons to
believe there are more HIRs, but , for
the time being, we have no way to access
them. Just give us time, though, we will
find a way.

But first, let's concentrate on the
ones we have and on their functions. The
first +thing to remember is: NO ACCESS
FROM THE KEYBOARD. Everything has to be
done in a program. A nice program to
list all the 63 HIRs is: LBL E OP 14 2nd
ALPH 2nd Time 2nd ALPH O INV Lst INV 2nd
ALPH 2nd Time 2nd ALPH DP 15 INV 5BR.
Once you have keyed in this program and
you list it, vou will see that the spe-
cial sequence 2nd APLH 2nd Time 2nd ALPH
will 1list as $. This is the seguence
that places the calculator in HIR mode
or when preceded by INV will take it out
of HIR mode. The hex code for the $
fumction is FC. Looking at what the pro-
gram does: UWhen vyou press E, OP 14
places the calculator in UNFORMATTED
mode, that is you have access to all 16
internal digits in a register. Next the
$ function places the calculator in HIR
mode, after which the O INV LS5T does the
listing of all 63 HIR registers, the
same as in the 59 a 0 INV LIST will list
all data registers, starting with regis-
ter 00. After the listing, the INV &
takes the TI-88 out of the HIR mode and
0P 15 brings it back into FORMATTED
mode, the normal mode one should do com-
putations in.

The Utility register is located in
HIR 49. That is at least the address you
should use to store something in it or
recall from it, -even if one day vyou
should notice a copy of 1its contents
somewhere else. To prove it is located
in HIR 49, we will store a bunch of 5's
in HIR 49 and hope to find it back later
by pressing the Utility register key. By
the way, this is =a simple exchange
register much like our familiar t-reg.
Storing into a HIR should be done under
program control only. 5o, in LRN mode,

V7NIP6

we key in: LBL A 5555555555555555 2nd
ALPH 2nd SHIFT (this is the +/- key) 2nd
ALPH 49 (the address) CE/C CE/C R/S and
we execute this one by pressing A. Now
we press the Utility register key and we
see 5.555556 '+14. Which proves.....

I also pressed from the keyboard,
before executing the program, the follo-
wing sequence: 1 + (2+ (3 + (and so
on up to 8 + (, at which time the calcu-
lator begged for mercy and flashed the
message A0S STACK FULL, just as I expec-
ted it to do. Then, when to program exe-
cuted the 1, 2, 3 and so on, up to 8,
showed up in the first eight HIRs, sho-
wing that there is the exact location of
the ADS stack. (Even if TI says it 1is
there, we don't have to believe it and
it is always prudent to check it out for
opurselves, witness the utility register)

I will not bore you with giving you
the exact sequences for all 13 HIR in-
structions. Once you have your calcula-
tor, you will also have a book and hope-
fully chapter &4, under Advanced Program-
ming, will tell you how to do it. Other-
wise, we will put everything we know in
the NOTES. Suffice it to say that there
are instructions for: 1. Placing the
calculator in HIR mode, hex code FC. 2.
Cancel HIR mode. 3. Placing the calcula-
tor in INDIRECT HIR mode, hex code FD.
4. Cancel INDIRECT HIR mode. (both "can-
cel"s are done by placing "INU" in front
of the instruction) 5. RCL HIR, hex code
FE. 6. 5TO HIR, hex code FF. 7. STORE
DIGIT, hex code FA. 8. RECALL DIGIT, hex
code FB. 9. GSET BIT, hex code F6. 10.
RESET BIT, hex code F7. 11. FLIP BIT,
hex code F8. 12. TEST BIT AND EXECUTE IF
SET, hex code F9 and 13. TEST BIT AND
EXECUTE IF RESET, obtained again by pla-
cing INV in front of # 12.

Needless to say that TI places =&
stern warning in the book, telling vyou
that these registers are used internally
by the calculator and that changing
their contents without knowing how these
registers are used, can result in loss
of option settings (not severe), memory
loss (rather severe) and locking up the
calculator (fatal). In the latter case
you sometimes might recuperate by tur-
ning everything off and starting all
over again. I found one instance where
it didn't help at 211. I had to remove
the battery and lost my time and date
settings in the process. The only things
saved were my few utility programs in
the constant memory module. After I in-
stalled the battery again, everything
worked just fine.

TI PPC NOTES V719P7

HIR Listing. ADDRESS ~ FUNCTION aood Lbl g
Qo0s
00 or A ROS stack ::;:f;,jg Ltﬂ
01 or B AOS stack aongd I
02 or C A0S stack oo0s S
03 or D ADS stack AoneE T
04 or E A0S stack AT
05 ar F 0AS stack |:|;:%!:|:x:: H
06 or G AOS stack Anaa I
07 or H ADS stack !:u:iiiii =%
08 or I Yn statisticics register) a0il s
09 or J Qun statistics register CLR ‘:”:‘1:_, -
10 or K N statistics register by ﬁﬁlﬁ; ﬁ:“
11 or L Xn statistics register oP 37 G014 Rtn
12 or M Oxn statistics register anis Lb | E
13 or N Rn statistics register aniF OF 14
14 or O yn statistics register | an=o E
15 or P System operations An=1 0
16 or Q Systems operations A0E2 Inw
17 or R Systems operations anes Lst
18 or S Systems operations An=d Inw
QorT Systems operations AAzS &
A1 20 or U Systems operations AAZe OF 15
SOE2ZE4C0] 21 aor V Systems operations An=a Ady
g 22 or W Systems agperations ﬁﬁaﬁ'ﬂd{f
23 or X Systems operations ﬁﬁai Pfﬁ
24 or Y Systems operations oo
25 or Z Systems operations
26 Position 7= SBR stack, position 8=language digit
27 Systems operations O=English
28 Subroutine stack 1=German
a2 29 Subroutine stack 2=French
Q042544 030000000 30 Subroutine stack 3=Italian
031 19eSESOOOOO00 § 31 Subroutine stack 4=Dutech
119626 0ESOOOO000 | 32 Subroutine stack 5=Suedish
:-';’DDUDDI;:E!EIElI:IEll;IE:l;ﬂ;i 33 Systems operations 6=Spanish
SOoOOooooDoaozeE 134 Systems operations -
OO4 7200000000040 |35 sttems Dgerations Pos D-F= regs 7 to F= Future use
I::“:“:’H*:”:IEE 36 Systems operations<FPos 1-L= max pgm steps possible
g FnenzelZzol |37 Systems operations-Pos 1-4= last pgm step in partition
QE2e2a0000o0o0o0l |38 Systems operations :
1529200000000101 139 Svstems operations
EES5555555025555 40 Systems operations.
Q2000301 OB400300 41 System Uperacions
EZ00000000000000 Ju2 System operations
Oooooooonoooooon 43 System operations
- OOOFHOODOSFOL1S1 Lk Digit in position 5 = Cursor pointer
342443 2442204422 |45 Alpha display register
EFFSESADDEDCCSIE |46 Alpha display register
OOO0Ooooooooonon a7 System operations
Ooonooooooooooon 48 System operations
4a0000000000001a |68 System operations (utility register)
OOoooooooooosFol 50 Auxiliary operator stack (for pending unary operations)
SOOOoOOD0o0ooo00 151 System operations
5100000000000000 152 System operations
SEO00000000naaia)53 Numeric display register
1 00000000oooo00ng 154 System operations
SOS000F0O0010010 |55 System operations
: 242424242424 Operator stack for pending operations
System uperat:}ons
System operatlons pigit positions in each register.
System operations
System operations |0[1]2]3]u}s[e]7]8]s[A]e]c|p]E]F]
System operations
System operations

59 time, pos.A: 1=D/M/Y, 0=M/D/Y

TI PPC NOTES

SUPER TI-59 TEST- Dejan Ristanovid sent
me this one just a few days before mine
appeared in the PPX newsletter. This
test, of course, is not for just anybo-
dy. It is intended for the "fanatics",
the ones that sleep with their calcula-
tor and in the middle of the night wake
up to try out some routine they have
been dreaming about. If you are just an
average TI-59 user, may I wish you luck?

As this is a TI-59 test, the calcula-
tor itself will be the judge as to how
good you did. First, key in the program
(funny, where are the answers? The TI-59
knows, rest assured!) and when you are
ready to take the test, just press A.
The TI-59 will not only take into ac-
count the correctness of your answers,
but it will also measure the actual time
you used to arrive at each answer!!!!

While doing the test, you are allowed
pencil and paper, but having another TI-
59 at your disposal is considered "tac-
ky". A Dbetter, but unfortunately un-
translatable word I learned in my youth
back in Flanders, says it is "haarzak",
which contains the connotations of "dis-
honest, wunfair, crude, sneaky and boo-
rish." Whatever, I wouldn't do it.

So, read the questions and when you
think vyou are ready to provide answers,
press R/S and hold it for 0.5 to 1 sec.
The TI-59 will display the digits 1, 2,
3, 4 and finally 5. Once you see the di-
git belonging to the right answer dis-
played, press R/S again, and go on to
the next answer. After you give the last
answer, the calculator will generate and
print a table of right answers. (you
see, they are in there somewhere!) Then,
below the print out of the table, points
for "time" will be given, between -5 and
+5. About 10 minutes should be an ave-
rage answering time. Then the total is
printed and you will receive your final
grade. You need at least a "6" to pass.

If at any time you hold R/S too long,
program execution will be terminated.
Don't worry, though. Just press R/S
again to restart. Good luck!

Question 1, worth 6 points: From cold
start you pressed RST LRN GTO LRN, thus
creating a one-line program GTO. Now
press RST SST 1 2 3 4 5. The display
reads
[1] 12345 Blinking
[2]) 5 Blinking
{3] 0 Blinking

V7N9P8

(41 0
[5] 45

Question 2, worth 6 points: In a pro-
gram there is a 1123 STO 00 GTO IND 00
sequence. After its execution:

[1] the calculator will detect an error
by blinking its display but will conti-
nue execution.

[2) GTO 123 will be performed.

[3] GTO 123 will be performed but the
display blinks after program execution
is terminated.

[4] program execution is terminated and
display blinks.

[5] no operation is performed and pro-
gram execution 1is terminated. That
means, this sequence acts as if it were
an R/S.

Question 3, worth 1 point: Pressing
CP from the keyboard, besides <clearing
program and T-register, also clears:

(1] flags, subroutine return register,
previous calls to library routines, and
all HIRs.

[2] flags, subroutine return register
and previous calls to library routines.
[3] flags and calls to library routines.
(4] flags and subroutine register

[5] all of the flags.

Question 4, worth 4 points: Load-and
go method of initializing Fast mode (PGM
02 SBR 240..etc.) clears everything,
except:

[1] flags

[2] HIRs.

{3] OP 01 through OP 04 contents.

[4] partitioning.

[5] subroutine return register & HIRs.

Question 5, worth 1 point: Pressing
IND E from the keyboard will:

[1} act as E.

[2] act as E, but cause the display to
blink.

[3] Jjust cause the display to blink,
without any other operation.

[4] act as GTO IND E.

[5] execute LBL 00 if it exists.

Question 6, worth 3 points: the se-

quence 2 LOG INV LOG WRITE will:

[1] cause an error.

[2] save bank 3.

[3] save bank 2.

[4] save bank 2 as a protected program.
[5] save bank 1.

Question 7, worth 5 points: At the
end of program memory starting at step
475 we have: ADV LIST STO 25 ADV. The
last step is 479. The partitioning is 6

TI PPC NOTES

OP 17. This program was executed by
pressing SBR 475. How many lines, inclu-
ding blank lines if any, were printed by
this program execution?

(11 5 (five)

(2] 4 (four)

{3] 3 (three)

(41 2 (two)

{51 1 (one)

Question 8, worth 9 points: You are
accumulating data and you want to deter-
mine their mean. You write the following
program, starting at step 000: DIV 2 =
SUM+ R/S RST and press CMS RST after you
go out of learn again. Then you enter 6
R/S 8 R/S 12 R/S At that moment you
realize that you should have entered 20
instead of 12. So you enter 12 INV SUM+
20 R/S. (SUM+ is the SIGMA+ used in sta-
tistical entries) Now the display shows:
[1}] 0 blinking.

[2) 2.
[31 3.
(41 20.
[5]1 20 blinking.

Question 9, worth 7 points: You want
to synthesize some hex codes and there-
fore you want to have a look at the in-
ternal 59 ROM. Thus, you press n OP 17
CLR PGM 19 SBR 045 P/R LRN. That "n" can
be:

[1] any integer larger than B, that is
9, 10, 11....

(2] 9 only.

[{3] 9 or 10 only.

{41 8, 9 or 10 only.

(5] 8 or 9 only.

Question 10, worth 5 points: Some-
where in user memory there is the follo-
wing program: 5 +/- EE 99 X:T 6 EE 99
INV EE INV GE CLR 2 R/S LBL CLR 1 R/S
After its execution, the display will
read:

(1] 2 blinking.
{21 2.

[3] 1 blinking.
(41 1.

(5] 6 99 blinking.

Question 11, worth 5 points: This
questions is the same as question 10, to
a certain extent. But the program is
slightly modified. 1Instead of 1INV we
have now 2nd INV (code 27) before the GE
instruction. After execution the display
now reads:

{11 1.
[2}] 1 blinking.
[31 2.

V7N9 P9

{4] 2 blinking
[5] 6 99 blinking.

Question 12, worth 2 points: A simple
program, starting at step 000: 1000 STO
00 DSZ 0 006 R/S will work for about:
(1] 4 seconds.

[2] 30 minutes.
{3] 15 minutes.
(4] 6 minutes.
[5] 3 minutes.

Question 13, worth 10 points: An
integer stored in RO0 has 2 to 12
digits. The first digit is a 5, the last
one is a 9. One of the following proce-
dures will, among other things, print
all of the digits of that number:

[1] RCL 00 OP 1 OP 5 0 RCL 0 FIX 9 OP 1
OP 5

[2] STF IND 00 RCL 00 EE INV EE STO O1
FIX IND 01 OP IND 01 OP 05 PRT

{3] CLR STF IND 00 EXC 00 OP 01 OP 06
PRT

[4] STF IND 00 RCL 00 FIX IND 00 PRT

[5] RCL 00 OP 04 12 STO 01 FIX IND O1
RCL 00 oP 06

Question 14, worth 7 points: You want
to store the display in HIR 8 and the T-
register in HIR 7. You need at least:
(11 7 steps.

[2] 5 steps.

[3] 3 steps.

(4] 1 step.

[S] no steps at all; they are stored
there automatically.

Question 15, worth 9 points: The re-
sult of pressing 9 INV LOG is called
"x". The result of pressing 10 INV LOG
is called "y". Then one of the following
is correct:

11 x = 10° and y < 10°
(2] x . 103 and y > 103
(4] % <100 amd v 2 10°
[5] x <10° and y < 10"

Question 16, worth 5 points: Placing
21 38 codes in your program will result
in a crash. But if there are 50 NOPs be-
tween the 21 and the 38:
[{1] nothing will happen.
[2] CP will be performed.
[3] PGM 01 SBR 00 will be performed.
{4] a crash will result, but you may re-
cover from that by pressing RST, which
is not the case when 38 follows 21 imme-
diately, because RST will do no good
then.
[5] a crash anyway.

Question 17, worth 1 point: In HIR 8

TI PPC NOTES

you have the number 0.0001111111111; if
you now execute under program control
HIR 8 OP 05, the PC100 will print:
[1] 88888 »
[2] 8887
[3) 8888
(4] o888
[5] 00088
Question 18, worth 8 points: You want
to give somebody a protected program
that has to run in Fast mode. To initia-
lize the Fast mode you will have to use:
(1] the method of storing 2000000000002
in status register 0 by asking the user
to press 7 EE after STF IND at the end
of the program.
[2] the same method but by using hex
code hl2.
[3] either 1 or 2 above, at will.
[4] the load-and-go method, using PGM 02
SBR 240, etc. at the beginning of the
program.
[5] any of the methods decribed above.
Question 19, worth 9 points: At step
000 of program memory there is short
program as follows: R/S LBL A STO 00 RCL
IND 00 RST. You want to trace the
routine by pressing STF 9 10 A. If 125
is stored in R10, a few lines will be
printed. But the last three lines of the
print out will be:
(1] RC* 0 10 125

V7N9P10

[2] RC* O 125 RST

(3] 10 125 RST
[4]1 * O 125 RST
[5] RC* *Q 125 RST

Question 20, worth 2 points: You want
to write a program and include a parti-
tioning-changing routine in it. You also
want to protect that program at the same
time. What method will you use to change
partitioning?

[1] I won't use any.
possible.

f[2] 1I'1l use hi2 to store the size
needed, in the correct place in status
register 0.

[3] I'll use the same idea as in 2, but
I'll ask the user tp press 7 INV after
execution of STF IND at the end of the
program.

[4] either method 2 or 3, as needed.

[5] the standard n OP 17 method.

You will have to choose the unique
and complete answer for each question.
Dejan says that this program is a syn-
thesis of all the quirks and programming
tricks discovered by so many different
people that naming them all would fill a
whole typewritten page. Everybody will
recognize his or her own discovery and
be proud that it has been incorporated
in this definitive TI-59 Supertest. That
should be reward enough.

It simply is not

SEE PROGRAM ON NEXT PAGE, PLEASE.

SUPERTEST,(59)~ A few remarks and some
clarification are in order, I think.
When you have read all of the questions
and think you are ready to answer them,
press A.

You will see, briefly displayed, a
" during two pause periods. Then the
display will go blank. This means that
the internal wheels of the 59 have star-
ted to grind away and are timing vyour
response time to question # 1. A respon-
-se time of 10 minutes is considered ave-
rage and will earn you zero points with
respect to time. Of course, vyou will
still earn some points for that guestion
with respect to the accuracy of vyour
answer. Taking more than 10 minutes for
an answer will get you gradually down
towards -5 points for time. Doing better
than (less than) 10 minutes will get you
plus points, up to 5 in total.

When vyou are sure about your answer
to guestion # 1, tap the R/S key light-

ly, about .5 to 1 sec long. Now you will
see in the display, in succession, a
mAN g "N g w3 g MM gnd g "S5M, Keep
your finger on the R/S key and press it
down, apgain for about .5 to 1 sec, once
you see the digit corresponding to the
correct answer. The display will momen-
tarily go blank, after which a "2" will
be flashed, telling you question # 2 is
now being timed. Once you think you know
the answer....well, you know by now what
to do, I suppose. There are 20 guestions
in total.

After question # 20 the printer will
go into action, printing out a table
with vyour score. The table is easy to
understand and printing orme here would
reveal the game. I you didn't think I
would do THAT, would you now?

The technigues used in this program-
are 1incredible. Try to decipher what
Dejan did and how he arrived at such an
interactive program. This program is
Just beautiful.

TI PPC NOTES

SUPERTEST TI-59, Dejan Ristanovié.

V7N9P11

a0
KINE

Q02
xlnict
ood
s
nos
ooy
a0s
nos
aig
oit

a1z
o1z
14
Q13
a1ie
oiv
nLe
o13
020
nz1
nzz
(el
24
02s
nze
Oav
gze
029
20
031

RIS

333

(291
19

e

ol R o)
49 133 2

Lo e N e }
v g
oo O On fe

Dn 0 SN

&3

4
a1
n3
05
&3
03
03
a3

03
o7
ag
0o
)
4
ns
oz
(Rix
i0
]

ag

ar

I

P TN A | e U

w3

m

e
e 0

(n }

w

O e o G e L —{

[}
MO
-

) D G T ot Bl g Pl L

o
Lol % SN v i
[

_0a

a O
B R R o R R P R RN TN
Ja

oS

0
E*
ar

a0

TN G e e P LD

(X

(]
avno
a7l
nrz
nys
074
ovs
ovs
ovs
ave
ore
030
031
nge
g3
nz4
033
N3
037
023
0z9
120
91
032
D9z
94
0395
098
037
033
099
120
131
inz
103
104
105
106
1a7
138
109
114

Lo G oD 0ad el 1 200 G P P B0 10 P D T Do o3 o)) 0t bt g gt et =t et it b
=g O LAY B O T ves 0 oD D T O B 0 D e OO AL D0) T A R 10D P e

et bt b b peb e ek bk bbb bk bk bk bd b b b ek R et b e b e b

43
oo
7o
ns
35
12
3]
ni
5{N
20
a5
53
a1
=13

15

71 5

33
&5
03
39
(1}
25

5%

42 5

-
e

19
)
oz
73
oo
13
53
e
26
13

71

23
&5
01
oo
25
01
20
59

42

=
V3

oo

-,
4

RCL
o

e A

43 RCL
gz 02
22 IHY
&7 EfQ
a1 o1
2 21
43 RCL
oz a3
44 Sk

03
13
B3
04
B3
03
Bl
20
43
a0
32

B R R e
D =) e O fo GO e

) =1l
o

OO 100 00 0 oD
L AT DD

R S R R v

b ek ek b b
D I AR 0 I SN (]

o

20e

Lo W v M O we R W]

SO R W el IRX v)Y O

ud

~§ M

R e I 2K 2N DR Y PR SR Y v LS O AV

a
b

oo

RC

L]
WOoOMm N D
[) [

| o V]
DT 1 Woww TO N T O e it
oY o |

A ol 0

| SR O RN I FE R

0% 3
Y 7
a1t
a2
0z 2
o7 7
£3 OF
G0 00
53 0P

43 RCL
05 0S5
S5 <
a1 1
(15 S
35 =
58 FIA
00 Q0
52 EE
22 InY

£3 OF
03 03

01
ns
03
]
oz
Qe
uju]
oo

>

nz
04
5
03
gz
e
a1
03
a5

T

)
wu
©
[T A AR N W W i O R VDO [mCEN}

ogooQ
o0 o
22 0OP
a1 a1
&3 0P
05 0%
05 2
X3 S
10 E®
Q22 Ay

275 43 RCL
& 05 0%
27T 92 AV
"o 31 RE-S
279 ¥e LBL
230 11 R
28 47 LCM3
232 01 1
gz 00 0
284 42 370
285 00 00
286 36 PGH
ey 0% 0%
238 T1 3BR
28% Qo 049
290 58 53
291 36 PGH
292 0% 0%
293 951 BST
234 47 RCL
2% 00 30
296 TS -
297 0% 9

Sav
328
329
330

29
ol

332
333
224
335
338
237
338
339
440
341
342
343

T44
345
246
243
249
350
351
352
353

3553
396
357
358

353
360
351
362

383

£1-1-]

Dl (N S8 pX A SR |

OUCR g}
O CROD O G0 0 Q0 3 e

a9

a3

a7
Qe

u

o7
3
38
21

TI PPC NOTES

NEWCOMERS' CORNER, by Bob Fruit. One of
the more interesting things you can do
with your TI-59 is simulations. Even if
the 11-59 ‘has limited memory, it is
rather easy to do simulations on it.
With proper planning, and reducing
a simulation to its essential elements,
it should work.

I would like to use as an example the
problem of how many check-out clerks are
needed to optimize the earnings of a
store. I personally have nothing to do
with retailing, so the numbers I use may
not be 100 % realistic.

A store owner must choose between ha-
ving <check-out clerks on hand and the
likelyhood of driving costumers away be-
cause they have to wait too long to be
checked out. The clerks make $ 10.00 per
hour. Costumers <come to the check-out
line on the average of one per minute.
It takes between 1 and 7 minutes to
check out a costumer. The store makes on

the average $ 1.00 per minute of check
out time, taking into account the
overhead expenses of the store,

including the cost of the check-out
clerks. If costumers find they have to
wait longer than 15 minutes to be
checked out, they will stop coming to
the store.

Those are the essential ingredients
of the problem I propose. First I will
write some of the routines that will be
used, before tying everything together
into a single program that becomes the
simulator.

The first routine will be the random
number generator. I prefer to write my
own one, rather than use the one from
the ML-Library. The latter uses too many
data registers. I did use it, however,
as a guide to write the following rou-
tine for numbers between 0 and 1:

LBL LNX ((RCL 00 X 199017 X 24298 +
99991) DIV 199017) INV INT STO 00 RN

This random generator uses only one
single data register and 39 oprogranm
steps. The next program is a simulation
routine to have the costumers arrive at
the check-out counters on the average of
1 per minute. I choose that no costumers
arrive if the random number output is
less than .3, 1 costumer arrives if the
random number output is between .3 and
2 costumers arrive when the random number
output is greater than .7. This progranm
then becomes:

gram.,

V7N9P12

LBL X SBR LNX X:T (0 + .3 GE ABS 1 +
.7 GE ABS 1 + LBL ABS O) CP RTN

If I later want to change the sche-
dule of the costumers arriving, it will
be easy to do so, because this routine

is separate from the rest of the pro-
If I want to write a program that
1 intend to use for solving a particular
problem, to be used only once, I write
each routine separately. It find it
makes debugging so much easier.

The routine that decides how long it
takes to check out 2 costumer is a sim-
ple linear one:

LBL DIV (SBR LNX X 6 + .5) RTN

The hardest part to write in this si-
mulator program is the routine that fi-
gures out which line the next operson
should go to. I have assigned every
fifth data register, starting with
register 10, as the check-out clerks'
memory area. This means that the first
costumer. will be checked out and there
will be four costumers waiting. If more
than that number of costumers show up,
the extra people will throw their selec-
ted purchases to the ground and walk out
of the store. The check out time
remaining will be in the dats register
for the costumer being checked out. When
another costumer gets in line and cannot
be checked out immediately, the time on
the clock (backwards counter) will be
saved in the data register. When a cos~-
tumer moves up to be checked out, the
clock at the time he got in line may be

compared with the current clock to see
how 1long that <costumer was 1in line.
If no one is in a "lines™ position,

the wvalue in the data register will be
zero.

The routine that selects a "lines"
position has three nested loops: costu-
mers to put in line, <check-out clerks,
and position in a line. As an open place
is found, its location is saved if it is
closer to the check out position than a
previously found one. After all oposi-
tions are checked, the lowest one found
is where the next costumer is placed.
The routine that finds a position in
line, as well as the one that 1locates
the first position for a given check-out
clerk, and the others that run the pro-
gram are not show here, since they can
all be found in the program itself.

The data registers are assigned as
follows:

TI PPC NOTES V7N9P13

newcomer's corner- Bob Fruit (cont.)

REG USE REG USE

0 random number gemerator 6 costumer counter

1 cost.checked out/wait time 7 clerk counter

2 cost.leave store/ch.out time 8 clerk's memory location

3 number of clerks 9 fives counter

4 not used HIR 7 clerk's number-low position

5 clock, time to run in min. HIR 8 clerk's empty low position

This simulator lets you determine number of minutes the clock was set to

several things about the given problem. (initial value of REG 5, oprinted Dy
1. Did the <costumers leave the store PC100) divided by 60.
because they could not find a place in You <can calculate the store profit,
line? Integer value in REG 2. money earned minus the cost. The average
2. How many costumers were checked out? wait time, total wait time divided by
Integer value in REG 1. costumers checked out (from the given
3, What was the total wait time for conditions at the start. This should be
costumer's check-out? Fractional part of below 15 minutes). The average earned
REG 1 times 10000. per costumer, total check-out time
4, What was the total amount of money divided by the number of costumers
earned by the store in the given time? checked out.
Fractional part of REG 2 times 10000. I ran this program and came up with
5. What did the check-out clerks cost the following results. The simulator was
the store? REG 3 times 10 times the set for 180 minutes:

ckeck-out clerks 2 3 b

costumers left store 85 b2 0

costumers ckecked out 107 143 166

total wait time 1170 1830 1882

total earned 307.36 bo6.42 611.96

total cost 30.00 45.00 60.00

profits 277.36 b21.42 551.96

average wait time 11 13 11

I hope this shows that it is easy to you now feel the check out time's linear

use your TI-59 as a simulator. If you nature 1is wrong, just rewrite that
program with separate routines particular module (routine). Anything
(sometimes also called modules, not to you do does not affect the rest of the
be confused with "solid-state modules") program as long as you don't get into
you can make changes to some parameters the other data register used by the
without needing to find all of the other other parts of the program. Have fun
places it might affect. For instance, if making your own simulators.

e e e e o o o v o = - Y - - - = = > = = A e . = Y = e = R R e e R S S s S m S S S S eSS S S

e = - o - - o - D . - . . - - - - S " - " e R = S T - D P D MRS s W Ee STa ms eSS oSS S S S EES

TIBBETTS' CONJECTURE.- Lester Tibhetts of Emporium, PA, saw Ulam's Conjecture in
ven3/10p13 and felt the irresistible urge to enhance.(I think nobody im our club ever
felt that way, but there is always the odd ball.) So he reduced the program from
45 steps to 37. What is remarkable, though, is that his program uses only ane,
single data register, versus the original one four, that he uses label addresses
and still managed to run at about 30 to 40 % faster.

And now for Lester's Conjecture:" After running any number, just keep pressing A so
you continuously operate on the number of steps it took to complete the previous exam-

ple, and eventually the number of steps required will decline to one.”
Lester says that he doesn't know why it works, and if it always will, but up to now it
always did. It must be a great paper waster!

LBL A CMS5 LBL INV OP 20) PRT DIV 2 X:T EQ LOG CP - INV INT EQ IN O)
X 6 + 1 GIO IN LBL LOG) PRT ADV RCL 00 PRT R/S

TI PPC NOTES VZNIP14

NEWCOMER'S CORNER, Bob Fruit.

[
wn
[0}

:]
-
fan
-~

T2 RO

Qed 128 &e ZTF £ <l 7o LE
0Es o2 | 129 32 HIF 25 soloo2n T
Qee 22 INW 130 13 18 a7 ._;‘r_-_ng .__:;. .;-é;F.
a7 &7 Ed 121 44 S] 2 c3% Tl SBRE
oz 25 CLE 122 08 08 40 EHC 280 23 LM
o e ges D% 5 133 43 RCL 75 - :’i o E
Z o gvo 7% - 134 0% 05 2 RCL cez e &
??‘ ?} } o7l 42 RCL 135 T2 57« o5 05 E?o Hf +
guguE s oFz 0% 0% | 136 08 08 a5 = zed 93 .
I:l I{? ‘:‘ ;‘_: ;:: e B 137 2 RCL =15 - 2':: ? EE c
arload 074 82 HIR | 138 02 08 11 266 54
Hi; EER oFs 1% 18 | 13% s5% < o o e ﬁgﬁ
415 eS w I 140 05 % oo o0 cbz % STE
'-li:{ l:'l-: - ovy FF 0 GE 141 95 = oo 0 :Stl g';'; =) LR
1302 S | o7e 23 CLR | 142 22 INW oo o | 270 E2 IHY
015 04 2 | ore 25+ | 143 53 INT as = | 271 53 5 LsT
o1 0z & o 18 18 | 145 &7 EW@ 34 gum | E7F 78 o |T3FF ve LEL
G1s as o+ o 25 = 146 28 LOG ot o1 | 204 0% o 1338 11 A
AliooEd o i 22 HIR | 147 71 SBR 71 sgr | 79 42 STO | 225 56 INT
oz0 1:‘.5‘ f DS s as 142 55 = 55 - :’;._‘E I:I‘:‘ o9 240 42 =TO
. hd Q3 43 RCL | 14% 72 27+ T osTe | 27 5; ! 341 03 03
0% @ O I O 311~ S - og 0% | 208 31 0} 342 99 PRTY
hi : 087 82 HIR |T151 7& LEL g5 - 27a 85 X 343 32 RTH
54 age 07 OF | 15z 28 LOG a1 1 280 03 3 [TEe4 ve LEL
T - 083 82 HIR | 153 97 D32 oo 0 =81 ?T) 345 15 E
H? ; g20 18 5 154 06 0§ oo oo c8c %G : 342 3’ 15ﬁ
aa 4 u%l ev EWd IR A oo 0 zg2 2000 | a2z 1w
an & 092 24 CE 158 7& LEL a0 cod M2 7O 348 59 INT
66 6 UEE EE ETD i 33 o ;EE UE gﬂﬂ 529 %Z bzg
a1 1 Q94 23 CF 44 sum | 288 08 TF | 2so o0 o
07 7 | nai 5 cir ~92_ D2 |—sr—ser |22l 22 RTH
Sq 09f 23 LLR 7o LBL | 298 7E LEL |7ssiveLEL
2z opwe | 2370 52 OF edb N E--tAE R O B e
2 INT | 03 57 iz 37 D52 | 3oy 5o PRT | 28 28 qow
iz g | 033 BT DS or o7 | 251 25 ORI @S5 35 i
oo oo _j?u b T?a. 7 CHE sam nm oS 256 92 FTH
53 RTH ol 0 T8 az pTm | €39 P ME
E: "'EE iz Te LE:L Tt LEL :;i B: H1I|§ LABELS.
. ' 103 29 CP EE 293 Y
Fd RS G4 57 D52 2. 296 43 RC 101 23 Lb
L5 S ; 23 LN | 228 22 ik | oas En AL
0 pg |—EESELOE | 170 sz wrT | 238 B2 HIR| 043 34 TH
38 51N | 1ng o4 f- | 1o 330 | 300 32 wiT | Dés 3n TAN
42 3T0 | jga 3z HIR | 173 20 0 | 301 43 RCL | 035 25 oLR
R IR ET e 05 3 | 304 Gz AR | 155 33 Doy
;2 RCL He 95 : ire r7 GE §gq gi 37 1:; 23 LUF
R IR I oot | 32 e | 1 3
= =10 s 77 GE | 179 S . | 307 00 00| 180 a4z 57O
I e 7y E 17s 23+ 08 22 HIR 166 S oHE
0s & 113 s op 151 44 som ad 23 o 309 18 18 | 189 48 Eue
e Man | 1ieozeozz | ogs2 04 e zag 77 GE | 300 42 &TO 225 44 sun
—=eEC | 1% 8L GTD) 183 44 SUM) a4 S0 IxD | 202 o2 LN | 53] S5 g
“a Cpe 2 22 LOG 124 02 0= s45 01 1 ;1; ;: ;+D 231 30 Ix
33 Rcc [121 S GELT| 133 ésop | anogs . | 313 22 ST 25T 55 .
o ar | 122 22 Y 186 33 32 7250 TELEL | 3ic oncp | zge 10 e
71 SEF 2z g9 OF | 187 25 LR | 251 so Ixp | 213 =2 BO o =R 12 B
56 Sye | 128 &l Bl |THeE TELEL | 55z o o | 318 SZHIR 222 el DEG
::—r_:—l':—E‘:'E— 12-.'.'? !::'»_.;: HI_F": 1E'§‘ "-‘_lE? Exl 5% 54 % ;Ié ,':‘7 E;g ;;: 11 E
0 TRn | 129 1¢ L0t 190 83 254 22 CF | 210 35 (on | a3 38 qow
= 127 71 SBR ial og s 2585 32 RTH z19 35 1oH I 25 {-F

FOR SALE: TI-59 cum PC100A. Included are the Master, M/U, Real Estate and Surveying

modules. Asking: $ 235.00. Contact Walter Kolb, 4610 N. 7th Street,
Arlington, VA 22203, USA.

TI PPC NOTES

PROMPTING IN THE TI-88.- The new calcu-
lator is equipped with some powerful OP
codes. Four of them are particularly in-
teresting, as they allow us to write
most of our "bread-and-butter' programs
with nice prompting. As the prompting
will be uniform from program to program,
much Lless written documentation will be
required to run these programs.

When the calculator is in that spe-
cial PROMPTING STATE the top row of
user-defined keys, A through E, will no
longer function as such. Instead, they
are used as answering keys marked YES,
NO, UNK (unknown), ENT (enter) and CONT
(continue).

The most powerful of the four promp-
ting codes is OP 04, the ALL-RESPONSE
CUE. In programming, this one has to be
fol lowed by four 2-digit numeric fields
(no short-form here) of which each field
will transfer program execution to one
of four possible numeric labels, depen-
ding on user response and the pressing
of one of the four prompting keys. Res-
ponding to the fifth one, CONT, simply
will skip over the first four and pro-
gram execution will continue there. If
all that longwinded explanation confuses
you a bit, Llets do an example and see
how OP 04 could be used in a real
program.

Suppose you display the message
NUMBER? and if the user answers YES, you
display 1234. 1If the answer is NO,
though, you display four alphanumeric
characters, say ABCD. If, on the other
hand, the user professes indecision by
pressing UNK, you might display a mix-
ture of digits and alpha characters,
such as 183D. If the user wants to enter
his own number, he just enters it and
presses ENT. And finally, if the user
decides 'none of the above' and presses
CONT, everything is bypassed and program
execution simply continues, signalled
here by displaying 0000. The program
Llooks deceptively simple. And in fact it
js very uncomplicated, although I would
hate to program that sequence (and do
all the overhead now supplied by one
single OP code) on my 59:

LBL E CE CLR ALPH NUMBER? ALPH OP 04
01 02 03 04 APLH 0000 ALPH R/S LBL 01
ALPH 1234 ALPH R/S LBL 02 ALPH ABCD ALPH
R/S LBL 03 ALPH 1B3D ALPH R/S LBL 04 STO
A R/S

When you press E, program execution

V7N9P15

will be interrupted and the message
NUMBER? displayed. If you answer YES,
the program will branch to LBL 01. If
you answer NO, the branch will be to LBL
02. 1If the answer 1is UNK, branching
will be done to LBL 03. And if the user
wants to enter any number and presses
ENT, branching to LBL 04 will store the
entered value in register A. And if the
user presses CONT, program execution
Wwill continue, here a display of 0000.

The second OP code of interest here
js OP 05, Lless powerful, but very handy.
It dis called the YES/NO REPSONSE CUE.
The three others, UNK, ENT and CONT will
be 1inactive now and only a YES or a NO
response will do something. Suppose you
sell tires, white walls and black walls.
So, when you make up an envoice, a natu-
ral question to ask is WHITE WALLS?, be-
cause each class supposedly carries a
different price. Now, when you answer
YES, the calculator will GTO a segment
containing pricing for white walls.
Otherwise, it will simply fall through
to the segment on black walls. As op-
posed to the OP 04 technigue of bran-
ching 2 la 59, with OP 05 you need an
INSTRUCTION BLOCK following it. If YES,
the program will execute this instruc-
tion block, otherwise it will skip that
block and continue program exection. An
instruction block may be any valid in=
struction, such as SBR 00, GTO LBL 00,
STO B, GTO 0134, or GBR 29 (go backwards
29 steps).

The third OP code of interest here is
OP 06, the ENT/CONT RESPONSE CUE. The
same programming requirement are used as
in OP 05: if ENT is pressed, the first
instruction block following OP 06 will
be executed. Otherwise, if CONT is pres-
sed, program exection will continue.
Here, the designers obviously had an en-
try in mind. Thus, a sequence such as OP
06 STO A RCL A is a natural. If you en-
ter a value it will be stored in regis-
ter A. If CONT is pressed, the former
value in A will be recalled and used in
the subsequent calculation. Needless to
say that in OP 06, the YES, NO and UNK
keys are ignored.

The Llast OP code, OP 07 is less
powerfull, but could have practical use.
It is called the CONT RESPONSE CUE. ALL
other keys are inactive and only a CONT
repsonse will illicit program continua-
tion. This 1is handy when you want to

TI PPC NOTES

make sure that the user sees a particu-
Lar message and signals receipt of it by
pressing CONT. No branching takes
places. Program execution simply conti-
nues after CONT is pressed.

VZN9P16

for a user response. If any function af-
fecting the program counter, such as
GT0, SBR, RST, or user—defined keys F
through J (or old A' through E') is exe-
cuted while the calcutator is waiting in
this

When the program encounters any of this special cue response state,
the above mentioned OP codes, program state is cancelled and the user-defined
execution stops temporarily and waits keys A through E are in effect again.
DEFINE (TI-BB).- Imagine you had a two- continue.
keystroke function on the 59 that could Consider this example: LBL E Dfn A

do all of the following: 871 01 OP 04 RCL
00 OP 06 R/S LBL D STO OO LBL E. UWell,
that is in a nutshell what Dfn N or Dfn
rrr is on the TI-B88.

When the program encounters Dfn N or
Dfn rrr, program execution is temporari-
ly suspended and the calculator waits
for either a numeric entry followed by
pressing ENT or no entry and pressing of
CONT. In the expression Dfnm N, the "N!
is one of the 26 first data registers
that may be addressed by means of a let-

ter of the alphabet . In Dfn rrr, the
"rrr" is any data register within the
current partitioning.

As vyou can see from the 59 analogy,

the calculator will stop with Dfn N= (or
Dfn rrr=) on the left side and with the
current wvalue of N or rrr on the vright
side in the display. Entering a new
value and pressing the ENT key (the D
key in the 59) will store that value in
N or rrr. Pressing CONT (the E key in
the 59) will leave the present value in
N or rrr and program execution will

Dfn B Dfn C Dfn D Dfn E O INV Lst R/G .

When vyou start the program by pressing
E, the display will show " A: o."
Enter a value and press ENT. Now the
display will show "B: 0." Don't

enter a value this time, but press CONT.

Again the display will show
"C: 0." Enter a value, and so on
up to £. Then the calculator will do an

INV LIST of all data registers, starting
with 000 (=A). This will be printed as

well as shown in the display. OStop the
listing by pressing R/S.
This is another ane of the step

savers the TI-88 is loaded with. It also
diminishes our dependence on the user-
defined keys. By choosing letters that
adequately represent the wvariables 1in
the eguation to be solved, one could
write a program that almost doesn't need
written documentation. All the prompting

can be done in the display. P could
stand for price, E for voltage, V for
velocity, R for resistance, L for

length, and so on.

TRUTH IN LENDING. In vén9/10p22 we had
such a program. Many members complained
about the instructions going with it.
They state that, without the printer,
Payment is displayed. It is not. And,
perusing the program, there is no provi-
sion for it either. Jorge Valencia in
Lima, Peru, suggests the following modi-
fication of the User Instructions for
off-printer use:

Press C to find the Payment Period.

Then press R/S for the Sum of Payments.
Press R/S again for the inflation effect
on this one. Another R/S and ocut comes
the sum of the interest portions.
Another R/S again will show the effect
of inflation on the last one. The next
R/S gives the SUM of the principal and
a last R/S shows the inflation effect on
that one too.

The listing should be modified by
inserting FIX 2 RCL 02 R/S between LBL
C' and RCL 13. (steps 354 and following)

FOR SALE: Ti-59 plus PC-100C, mag cards and M/U module. Asking $ 220.00. Contact
Anthony Caliva, 211 Haddonfield Drive, Dewitt, NY 13214, USA.

LADDER NETWORK ANALYSIS, the poor man's CAD (Computer Aided Design) Gerald W. Williams,

in Microwaves, Janua;y 1981, Eb 82-78. Mr. Williams is a member

of the Tecnical Staff, Hughes Aircraft Co., Torrance Research Center, 3100 W. Lomita Blvd.

Torrance, CA 90509, USA.

The article describes how one can use & TI-59 program to

analyze ladder networks over any range of freguencies. The calculator figures s-parameters
input impedance, insertion loss, reflection coefficient, and VSWR. The 522-step calcu-
lator-only program is included. It reguires the use of either the Master or the EE

library module.

