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Preface

This research was performed in an effort to provide
improved data reduction techniques for the analysis of data
collected in tests of tactical air-to-air guided missiles.
Hopefully, the techniques developed will enable the Air
Force Test and Evaluation Center (AFTEC) Analysis Branch to
meet their objectives of improving the quality of their data
reduction efforts.

I wish to express my most sincere thanks to Lieutenant
Colonel Charles W. McNichols for his comments and suggestions
along the way and for tactfully averting me from near disas-
ter on more than one occasion. I would also like to thank
Captain Douglas L. Brazil of AFTEC for suggesting this re-

search topic.

Carl J. Vogel
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Abstract

This research was conducted with the objective of
estimating discrete probabilities of successful employment
of tactical air-to-air guided missiles in three modes of
operation and to estimate confidence intervals about these
probabilities of success which did not exceed .20 in length
at the 80% level of confidence. A set of proxy data con-
sisting of 34 missile launches was randomly generated to
simulate the results of a test series. This set of proxy
data was analyzed using Regression Analysis techniques,
mathematical modeling of the results of the test series as
probability density functions, and Bayesian techniques.

Regression analysis techniques did not provide usable
results in this application, but the failure may have been
due to the nature of the data being analyzed. The events in
the flight of a missile were modeled as Beta probability
density functions which were statistically combined and in-
ferences were drawn from the distribution representing the
overall probability of success. To demonstrate the use of
Bayesian techniques to determine a prior distribution from
historical data, the basic data was assumed to have been
replicated and was then reanalyzed. These analyses did not
meet the stated objectives because the means could not be
statistically separated at the 80% level of confidence. The
lengths of the associated 80% confidence intervals exceeded

the objective of less than or equal to .20 in length for all
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cases when the basic proxy data was analyzed and in one of
the three cases when historical data was assumed. Depending
on the availability of historical data and the suitability
of the approach, a combination of mathematical modeling and

Bayesian techniques may meet the stated objectives.
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INFERENCE OF PROBABILITY OF KILL

OF AIR-TO-AIR MISSILES IN
VARIOUS ATTACK MODES

I. Introduction

The Air Force Test and Evaluation Center (AFTEC)

routinely conducts test programs involving tactical air-to- &
air guided missiles which are a part of the U. S. Air Force
inventory. The purpose of these test programs is to eval-
uate the effectiveness of modifications to a discrete sub-
system of the missile (for example, a fuzing, or a guidance
subsystem). A single test program generally does not in-
volve the evaluation of more than one modified subsystem.
The tests are designed to evaluate the reliability and oper-
ational performance of the missile system. To determine the
operational effectiveness of the system, firings are con-
ducted to evaluate the missile system in three modes of
operation. These modes include:

1. Target at higher altitude than the receiver
(Look-up)

2. Target at a lower altitude than the receiver
(Look-down)

3. Target maneuvering in excess of 4 g's (Maneuvering)

It should be noted that while the look-up and look-

down modes are mutually exclusive, the maneuvering mode can

g g et

T L ) g



NS (A T

occur concurrently with either the look-up or look-down
modes. This leads to the possible evaluation of a single
launch in two different modes of operation.

Because of budgetary constraints, there is a limit to
the number of missiles which are fired in any given test
program. This figure normally varies from between 20 So 30
missiles fired per test program. In an effort to expand
the data base, the missiles are carried on a number of
"captive-carry" sorties before they are actually "live-
fired"”. The ratio of captive-carry to live-fire sorties
varies by both program and mode of operation from about 6:1
to 13:1. Both reliability and probability of kill data can
be extracted from the captive-carry and live-fire sorties.

The probability of kill data obtained from the test
sorties is evaluated differently in the two types of sorties.
In the live-fire sorties, the missile either does or does
not destroy its target, and is rated respectively as a "1"
or a "C"”. In the captive-carry sorties, recordings of var-
ious cockpit indications are reviewed in order to subjec-
tively assign a probability that the missile would have de-
stroyed its target had it been launched.

An additional source of disparity in these tests con-
cerns the surrounding conditions of release or simulated
release. Because of the limited number of live-fire mis-
sions, the missiles are not fired unless all aircraft and
missile systems are thought to be in perfect operating order

and the weather is ideal. However, the captive-carry
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launches are simulated under less than ideal conditions.
Once the test program has been completed, the results
of all tests are averaged so as to determine a single prob-
ability of kill for the modified system. No attempt is made
to reduce the test data to reflect a separate probability of
kill for the three modes of operation, nor is a confidence
interval established. The reason for not establishing sepa-
rate probabilities of kill or confidence intervals is based
on the belief that the relatively small total sample size,
compounded by the large number of independent variables in-
volved, could result in erroneous conclusions. And in the
case of establishing confidence intervals, the lengths of
the intervals would be so large as to be of no value.
Members of the AFTEC Evaluation branch have indicated
that identification of a test plan or a refinement in the
method of data reduction which would allow the determination
of a probability of kill in each of the modes of operation
with an appropriate confidence interval would be a valuable
contribution to test program reports and the information
these reports convey to system users. Further, they feel
that an estimation of the kill probability + .10 at the 80%

confidence level would meet their needs.

Problem Statement

This background leads to the following statement of
the problem. The test design and subsequent data reduction
techniques used by the AFTEC analysis branch do not permit

assigned personnel to either separate accumulated test data




to estimate a probability of kill for discrete modes of

operation of a subject missile system, nor is it possible to

determine a usable confidence level. AFTEC would like to

EE

provide the system users with both a probability of kill
estimate for each mode of operation and a confidence inter-
val about these probabilities of kill which does not exceed
.20 in length at the 80% level of confidence subject to a
predetermined number of live-fire sorties and the limita-

tions of the test environment.

Objectives

This study is focused on identifying a solution to

the above stated problem.
The primary objectives of the study are:
1. To identify a method of data reduction which

will:

——

a. allow data to be reduced to give an in-
dication of the expected probability of h

kill in each of the modes of operation;

e —

b. allow confidence intervals to be esti-
mated about each of these probabilities

which both AFTEC and the system user feel

represent a realistic and usable estimate.
2. To reduce the findings to a format which:
a. uses readily obtainable data;

i b. 1is easily usable;

c. is reliable and can be easily interpreted.




Scope/Limitations

The scope of this effort is limited to examining the
operational performance evaluations of tactical air-to-air
missile systems. It is possible that the findings herein
may be applicable to other aspects of the evaluations of
these systems, or that they may be transferred to other
types of systems. However, these applications will not be

addressed.

Utility

The AFTEC air-to-air missile analysis branch is antic-
ipating up to six subsystem evaluations of the Sparrow
(AIM-7F) and Sidewinder (AIM-9L) tactical air-to-air missile
systems within the next two to three year period. Meeting
the previously stated objectives will enable that organiza-
tion to increase the value obtained in these test programs,
and will give the missile system users an improved base of

knowledge during the early phases of use of these systems.

Assumptions

It is assumed that there are no constraints to reason-
able changes in the amount and type of data collected during
an evaluation. That is, if some type of data which is not
currently being collected can be demonstrated to be impor-
tant in the process of data reduction, this reading can be
taken in future programs.

In certain portions of this paper, even 3 in a missile's

flight are represented by probability distributions. Events
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specifically addressed include proper launch, launch se-

quence, guidance, proximity fuzing, impact fuzing, and war-
head lethality. It is assumed that random variables repre-
senting the probability of success of the above events are

statistically independent.

Overview

The remainder of this paper is largely devoted to
descriptions of various methods of treating experimental
data. The following chapter offers brief descriptions of
potentially useful methods which may be applied to the prob-
lem at hand. Chapter three addresses the specific applica-
tions of these methods in treating the results of missile
firings. Results of each of these applications are covered

as each method is discussed. Finally, in Chapter four,

conclusions are drawn from the results of the research.
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II. Potentially Useful Approaches

The thrust of this study is to determine a method of i
data reduction which will permit the estimation of a prob-
ability of kill which is accurate + .10 at the 80% level of :
confidence within the constraints of AFTEC policy and the
operational limits involved in conducting the tests. To-
wards this end, the following techniques have been investi-
gated and tested to determine whether they are helpful in
reaching the goal.

1. Multivariate analysis to include:

a. linear regression using the raw data

b. 1linear regression using dummy variables
or classes of data :

c. curvilinear regression

2. Mathematical modeling of the primary phases

et

of the missile's mission

Bayesian update using:

W

a. history of a subsystem as used in other
systems
b. history of a subsystem which has not been
modified for the current test series
c. subjective input of data
The above listed areas are not mutually exclusive and
an acceptable solution may involve a combination of these
techniques. For example, a regression technique may prove

valuable in predicting the performance of the discrete phases

) A RSN, 5 WA T . 0 =

e g me e




Sp—

of the mission; the conditional densities of each of these
predictors may accurately predict system performance; and
Bayesian techniques might be profitably employed to take
advantage of prior history of a system or to account for

changes made during a test program.

An inherent problem in trying to accommodate these
possible approaches is the identification of a framework 1
which is sufficiently flexible. An effort will be made to i
select specific techniques throughout this study which will :
readily accommodate other types of treatments.

Because of the large amount of manipulation of data i
anticipated in this investigation and in the possible combi-
nations thereof, and because of the classification of actual
launch conditions and test results, the decision was made to
base all preliminary research on a randomly generated set of
proxy data. This data consists of 34 flights which have
been randomly generated from possible launch conditions as
determined from unclassified sources. The data includes 15
launches in the lookdown mode, 19 in the lookup mode, and
19 against maneuvering targets in both modes. A tabulation
of this data is included in Appendix 1. Because of the

method of generation of this data, it may not bear any re-

semblance to actual test launch conditions. Similarly, the

results of the tests were randomly generated and may not
have any correlation with any actual test results. All con-

clusions have been based on this data, and applications to

an actual test program will not be addressed in this document.




For each of the techniques investigated, the overall
success or failure of the missile has been examined from two
separate points of view. The first, more simplistic ap-
proach considers the response variable to be the ultimate
success or failure of the system regardless of the cause of
failure. Because this approach tends to take a macroscopic
view of the missile system operation, it will be referred to
as the macro-model. In the second approach the mission of
the missile is separated into several nodes. These nodes
represent a potential failure point in the mission. Since
the evaluation of a missile system may be conducted con-
currently with the evaluation of a potential launch platform
(for example, the F-15 or F-16), and within a highly con-
trolled test environment, the structure of the model con-
taining the above mentioned nodes has been designed to make
allowances for failures in the launch platform or other
factors extraneous to the proper operation of the missile
which could cause its performance to be unsatisfactory or
unmeasurable. These nodes have been included to accommodate
possible adaptation of the model to evaluations of the com-
bined launch platform/missile system at a later time, and
to recognize the realities of the test environment. How-
ever, this study is primarily concerned with the proper
operation of the missile itself. The model for this analy-
sis is illustrated in Figure 1. This approach takes a rela-

tively microscopic view of the missile system and will be

referred to as the micro-model.
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As indicated in Chapter one, the nodes of interest

will be represented by probability density functions which

are assumed to be statistically independent. Some justifi-

cation of the assumptions of independence is in order. One

such specific area requiring explanation is the relationship

between guidance and impact. It would seem that the result
of the guidance function would directly affect the impact i
function. However, successful guidance is defined as guid-
ance which places the missile within some predetermined

distance of the center of the source which the seeker senses

(e.g., the center of the exhaust for an infrared seeker, and
the center of the electromagnetic return in the case of a
radar seeker). The predetermined distance is generally
small relative to the overall physical dimensions of most
probable targets. From the above definition of guidance, it
can be seen that a direct hit does not imply successful

guidance, nor does a miss imply unsatisfactory guidance.

BT

Therefore, because the generalized shape of an aircraft is

- eerymy

irregular, it is assumed that successful guidance is inde-
pendent of whether or not the missile impacts the target.
Similarly, the rationale of splitting the functions of
the proximity fuze is not readily apparent. The premature
portion of the fuze operation is a measure of how well the

specific design is able to exclude the influences of clouds

and other atmospheric disturbances, as well as background

characteristics, and extraneous effects such as "glint” and

variable returns peculiar to the sensor, while still
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sensing its location relative to the target. The node

labeled "proximity fuzing occurred” is simply a measure of
whether or not the proximity fuze generates a proper pulse
to detonate the warhead.

Other areas of the model do not appear to require a
Justification of the assumption of independence.

The following are brief discussions of each of the
techniques employed to predict the performance of an air-to-

air missile system.

Regression Techniques

The first approach to be considered involves the use
of regression techniques. Ideally, this approach should
facilitate the selection of those input conditions which
have a significant impact on the probability of success of
the system for any phase of the mission or of the entire
mission. The results of the analysis lead to the evaluation
of coefficients for these significant inputs, and solution
of the equation, combining any given set of launch condi-
tions with the coefficients, will yield a prediction of the
probability of success for that set of conditions. A confi-
dence interval for this probability can then be determined
from the variance-covariance matrix using the following

relationship:

Y + t(n-p-1, 1-a/2) SVX; c X,

o




e

Where:
C = the variance-covariance matrix
s = square root of the residual mean square
n = the number of observations
p = the number of terms in the regression
equation
t = the "t" statistic
X, = the column vector of the input variables
Xs = the row vector of the input variables
Y = the mean of the response variable
1-a = the desired level of confidence

The specific theory and applications of regression
theory are well documented and will not be addressed in this
paper. For a treatment of the theory and its development,
see Draper and Smith (Ref 3). Another treatment can be

found in SPSS: Statistical Package for the Social Sciences,

chapters 18, 20, and 21 (Ref 6:276-300, 320-397).

Specific applications of regression techniques con-
sidered within this study include the treatment of the data
as it was recorded. This approach is not anticipated to be
productive because of the large number of independent varia-
bles and the wide range of values which they can assume.

A second approach involves the use of dummy variables
to reduce the impact of the wide ranges of certain varia-
bles. For example, the effect of the launch and target
airspeeds may not be as important as the fact that the

missile has a speed advantage or disadvantage at launch.
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Similarly, the aspect angle can be divided into broad cate-
gories which may be more meaningful than the actual value of
the angle. Such categories could include launches within a
30° arc about the head-on aspect relative to the target as
one dummy value; a 30° arc about the tail-on aspect as an-
other value; and finally, all other aspect angles could be
considered as beam attacks receiving a third value.

An attempt has also been made to examine the possible
effects of variables not recorded, but which could be cru-
cial to the overall success or failure of the missile system.
Such variables might include an estimated time of flight of
the missile which may reflect guidance or thrust character-
istics. Another such variable is the effective range of
the missile or the distance it must actually fly to inter-
cept. This variable is a function of launch range, aspect
angle, relative speed, altitude differential, and target
maneuver. Finally, the terminal angle of intercept between
the missile and the target may directly affect the lethality
of the warhead or the firing properties of one or both fuzes.
While it is felt that these additional variables may be sig-
nificant, and, even though an effort has been made to gener-
ate them, it is questionable whether such calculations can
produce these values with a reasonable degree of accuracy.
This is due to the rapid change of all variables during the
course of a missile's flight. It should be possible to de-
termine appropriate mathematical statements to accurately

reflect these changes, but such an endeavor is beyond the

15
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scope of this thesis and the results would be too cumber-
some to introduce into a regression program. Efforts to
generate additional values are therefore limited to simple
approximations which hopefully will reflect the impact of
the actual values on the system's operation. The specific
explanations are addressed in the chapt-r on applications.
Finally, methods of curvilinear regression have been
employed in an effort to isolate those variables having a

higher order contribution to the success of the system.

Mathematical Modeling

Another possible approach in predicting the probabil-
ity of success for a missile system is to mathematically
model the missile's mission in terms of probability density
functions. For consistency with other approaches, the mis-
sion itself can be modeled as an event, or as the macro-
model. The mission can also be separated into a series of
discrete events representing the earlier identified nodes as
was done in the micro-model. The total number of successes
and failures either for the overall mission or for the nodes
can then be used as parametric measures which define appro-
priate probability density functions. In the case of the
micro-model, the parameters defining the nodes can be stat-
istically combined to determine the mean and variance of a
final distribution. This final distribution can be used as
a model to predict the probability of successful operation

of the missile system in each mode of operation. In the

macro-model, the number of successes and the total number of




trials can be used to define a distribution which can also
be used to predict the probability of system success.
Problems associated with such an approach are twofold.

The first deals with the identification of an appropriate

type of probability density function describing a random
variable representing the probability of success which is
capable of accurately reflecting a wide variety of test re-
sults. The second difficulty involves the mathematical
determination of the parameters of the resultant density
function. For the first of these problems, appropriate dis-
tributions may include the Beta or the Normal distributions.
In this research no assumptions have been made concerning the

normality of the test results, but if such an assumption can

be shown to be valid, the approach may prove to be valuable.

In the absence of this knowledge, information from a test

program can be adequately represented by a Beta distribution.
This distribution is defined between zero and one, and has a
wide variety of shapes which are determined by the selection
of two parameters. The appropriate choice of the input
parameters can vary the shape of the distribution to include
"u", "J", triangular, and inverted "U" shapes. The uniform
density function is also a special case of the Beta family.
Another feature associated with the use of the Beta family
of distributions is that results of tests having either a

"0" or "1"” outcome - success or failure - can be used to

define the parameters to shape the density function.
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The Beta distribution is defined by the equation:

L(a + a=1 4 __yB-1
T(a) T (B X (1-x) O<x<1

f(x)

o

Elsewhere
Or alternatively:

(N -l N-r-1
r‘(r)rEN)-rT el €1 e

0<x<1
f(x) =

0 Elsewhere

Where:
N =a + B = number of trials
r = o = number of successes
N-r = B = number of failures
T(Y) = (Y-1)! = the Gamma function

The second expression for the Beta function, while
less general, has the advantage of including test results
directly, and in this application is found to be generally
easier to manipulate in some of the derivations which follow.

Other properties of the Beta distribution are given below:

Mea.n=p.=ﬁ

Variance = ¢© = L{NE)

Mode=M=IT_-§




Another advantage of the Beta family of distributions
is the fact that it is a conjugate family of distributions, |
and it can be easily manipulated to incorporate additional
information by the use of Bayesian techniques. Such manipu-
lations require only the respective addition of the parame-
ters of the sample and prior distributions to determine the
posterior distribution.

Since this study is being conducted with attention

being paid to the eventual combination of techniques, it

should be noted that the primary drawback in using the Beta
distribution concerns its use in the Bayesian form where
anomalies may occur when no prior knowledge is assumed.
Since these are peculiar to the use of the Beta as a conju-
gate distribution, discussion of these anomalies will be
deferred until the subject of Bayesian methods is addressed.
The second problem associated with the use of a prob-

ability density function to model the missile system's oper-
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ation is the determination of the parameters of the distri-
bution representing the probability of successful system
operation. For the case of a series model where the in-
dividual random variables representing the probability of
subsystem operation are statistically independent, the final
probability can be expressed as the product of the condi-

tional probabilities, or:

P = P1 X P2 X ses X Pn
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The value of P is determined by the values of random
variables P1, Pz. Mo, o Pn assume. For the specific case
of the model identified earlier in this chapter, the above

leads to the following relationship:

Pk = Pla X Pls X Pg b 4 Ppp X Pf x Ple

Where:
Pn = a random variable representing the probability of

success at the nodes with the subscripts:

k = kill

la = launch

1s = launch sequence
g = guidance

Pp = no premature proximity fuzing
f = fuzing

le = warhead lethality

This statement, however, ignores the presence of two
fuzes and their possible parallel nature in the impact loop.
Since it is common design practice to equip an air-to-air
missile with both proximity and impact fuzes, the measure
of success of the fuze subsystem is a function of the
proper operation of both fuzes, modified by the probability
of the missile impacting the target. 1In the case of no
impact, the probability is simply the probability of the
proper operation of the proximity fuze multiplied by the
complement of the probability of impact in series with the

remainder of the model. In the case where the missile
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impacts the target, the probability of proper fuzing is the

complement of the probability of the failure of both fuzes

multiplied by the probability of impact. The successful i
fuzing for the missile is then a function of whether or not 1
the missile impacts the target, and the proper operation of

both the proximity and contact fuzes, or:

Pp = (1-Py) (Pg) + (P;) (1-(1-Py)) (1-Py.))
= PyPge - Pipfcpfp s pr i
Where:

P, =a random variable representing whether or not the
missile impacts the target A
pr = a random variable representing proper operation j
i
of the proximity fuze E

Ps, = a random variable representing the proper

operation of the contact fuze
The overall model for success of the entire missile

system then becomes:
Pp =By Py, Pg.’Ppp [PiPes = PiPecPrpy + pr] P

This function can be relatively easily approximated
using Monte Carlo techniques. This approach involves the
generation of a Beta distributed random variate from each of
the distributions representing the nodes and combining these
variates as indicated in the above model. The resultant

probability represents one variate from the final density

function.




Iteration of this process will yield a number of

variates from the final density function. The mean and
variance of this sample can be calculated and inferences can
be drawn as to the nature of the density function for Py.
The level of confidence in the information thus obtained is
a function of the number of iterations and the underlying
assumptions.

With only the assumption that the distribution has a
finite mean and variance, the use of Chebyshev's Theorem is
appropriate. Chebyshev's Theorem is also valuable in de-
fining the worst case situation in the event that no fur-
ther limiting assumptions are warranted. It might be possi-
ble to use the Central Limit Theorem to justify an assump-
tion of normality if the underlying distributions are all
assumed to be "well-behaved". With minimal assumptions about
the nature of the underlying distributions, a density func-
tion representing a sum of independent random variables will
converge asymptotically to a normal distribution, and a
product of independent random variables will converge to a
log normal distribution.

The relative advantages of using Chebyshev's Theorem
over the Central Limit Theorem lies in its applicability
regardless of the nature of the final distribution. Thus,

it does not open the door to criticisms based on assumptions

made to reduce the size of the sample required. However,

relaxing the initial assumptions carries the cost of signif-

icantly larger number of data points to arrive at similar




levels of confidence if using the assumption of normality.
For example, a 90% confidence level that the mean of the
simulation is within a given interval ahout the true mean
using Chebyshev's Theorem requires 3.72 times the number of
samples which would be required using the Central Limit 1
Theorem as justification for the assumption of normality.

A 80% confidence interval would require 3.05 times the num-

ber required for the same interval and level of confidence

using the assumption of normality. a
The analytic solution of the model is somewhat more
cumbersome than the Monte Carlo approximation, and it is not
as easily changed, should changes in the overall model be
desired. However, the method has the advantage of not in-
herently introducing uncertainty as the Monte Carlo approx-

imation does. The method used to arrive at a mean and var-

iance of the function representing system success involves

the use of expected values of the model determined above.

I———

| In the earlier defined model, the random variable repre-

! senting the success of the system (Pk) is represented as a
product of probabilities of success of the individual nodes
except for that portion of the model which represents fuzing
operation. The entire impact/fuze loop of the model can be
considered to be in series with the remainder of the model.
The following derivations will find the desired parameters
of the loop so it can be treated as a series component of
the model. The following basic relationships will be used

to determine the expected value (the mean) and the variance




of the earlier proposed mathematical model:

| ©0

‘ ; E(X) = f_, x f£f(x)dx = By

g - E(X,X,) = E(X;) E (X,)

(For independent X Xz)
E(X1 + xz) = E(Xi) + E(Xz)

E(CX)

)

C E(X)

(c

)

a constant) f

v(x) = E(x?) - (E(x))? |

Where: |
E(X) = the expected value of the random variable, |
X.
V(X) = the variance of the random variable, X. :

As demonstrated earlier, the impact/fuzing loop can

be represented as follows:

Pp = Py Pgo = Py Ppo Ppp + Py
The expected value of this random variable is:

E(Py Pgo) - E(P3 Pgy Pgy) + E(Pgy)

Since all events have been assumed to be statistically

independent:
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E(Pg) = E(P;) E (Py) - E (Py) E (Pgo) E (Pg) + E (Py)

= By Bge T By Pge Pep * Bpp

The overall model is:

E(Py) = E(Py Pyg P, P Pp Pp.)

Again, because of independence:

E(Py) = E(P))E(P))E(P,)E(P, )E(PL)E(P),)

=81 Mg b p‘pp e H1e
Substituting the expression for the expected value of

the impact/fuzing loop:
E(Py) = By, Mg Mg upp(uiufc - By Beckep - ufp) Hie

The derivation of the variance is more complicated

o (.«‘%T@?,.,. o

than that for the mean, and it will be approached in two

separate parts. First, a general derivation of the variance

of the product of independent Beta distributions will be
demonstrated. Second, the variance of the impact/fuzing

loop will be derived.

The variance of the product of n random variables is

given by the following expression:

(Fl v 2 t .
'} P:) = B(( P. - (E A
IR 111 ) - ( (ELI P;))
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Because of independence, and the related fact that
the covariance between the independent variables equals

zero, this expression can be reduced to:
n

n n
vl e =[1 = - O] EepI®

Using the definition of variance to evaluate the E(Pz)

terms:
2 2
V(Xi) = E(xi) - (E(Xl))
Therefore:
ey - 2 2 2
E(Xi ) = V(Xi) + (E(xl)) | + My
Finally:

n n 2 2 n 2
V(Lll Pi) =:|I.11 (O'i * My ) - [i[;ll “-ij

The mean and variance of the Beta Distribution have
been given earlier as:
g2 = L{N-r b= %
(N+1)
Substituting these expressions into the equation for
the variance of a product of independent Beta random varia-

bles yields:

ri(Ni-ri) r; 2 - 2
vl » g d
p ¢ 1”1 N, (N1+1) 1 Ny & [ﬂl iy




geag

. =r.+r.N.4r.
N1 r +r1Nr r

n
2
C By Ni%Ni+l) = ] T [!11 ui]

(ri+l)

n n
2
=r]l [ R (ﬁ;ITT ] 2 [lll By ] .

The variance of the impact/fuzing loop will be derived

by defining three additional variables as follows:

v,
I

1 Pipfc

Y2 4 Pincpr

pr

The variance of the loop is:

VY, -Yp+¥y) = E((Y)-Yp+¥5) %) (B(Y; -Yp4¥5))°
=E(Y, %) +E(Y,%)+B(Y,%) -2E(Y, Y,) +2E(Y, Y5) -2E(Y, ;)
~L(E(Y;)) 2+ (B(Y,)) B4 (B(Y5)) 2-2E(Y, )B(Y,)
+2E(Y1)E(YB)-ZE(YZ)E(YB)]
=B(¥, %) ~(B(¥;)) +B(¥,%) - (B(¥,)) 2+E(Y57) - (E(¥5))
-2E(Y1Y2)+2E(Y1)E(Y2)+2E(Y1Y3)-2E(Y1)E(YB)
-2E(Y2Y3)+2E(Y2)E(Y3)

The first three pairs of terms on the right-hand side
of the final equation can be seen to be the variances of the
three previously defined variables. Each can be evaluated

by using the general equation for the variance of a product




which was derived earlier. The last three pairs of terms
represent the three covariance terms for the three possible
pairs of variables which will be evaluated by substituting
their initial definition into each expression.
i 2. 2 2 2 2
E(Y1Y2)-E(Pi Peo pr)-E(Pi )E(Pfc )E(pr)
Since, from the definition of variance:
E(x?) = V(X) + (E(X))?
Therefore, E(Y1Y2) can be evaluated as:
2 2 2 2
E(Y;Yp) = (057403 ) (dps +pe Mgy

Also, by definition:

5 el o
E(Yi)E(YZ)—(uiufc)(uiufcufp)-ui Moo Pep

i Similarly:
| E(Y Y5) = il pokpp
E(Yl)E(Y3) = Bibechey
E(YpY3) = ybpo(og, *ey”)

E(Y?_)E(YB) = uiufcufpz

Noting that E(Y1Y3) = E(YI)E(YB) and substituting the
remaining values into the equation for the variance of the

impact/fuze loop yields:

o
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2 2 2 2. 2 2 2
V(Pf)“’i,fc*“i,fc,fp*"fpfzt(“i +3 ) (0pe *hpe )(ufp)]

2 2 2 2
+2|-11 Uro ufp-z[(uiufc(cfp +ufp)]+2uiufcufp

*2U 5ok pp =2 s pok gy

N Y 2 A S N WEL S
=03, £c*%1, e, fptOrp 2 ppl 931 Opc *O3 Hee i Ope"]

2
'ztuiufcc fp]

The above equations for the mean and the variance of !
the impact/fuze loop can be solved to obtain an N and r term
for the loop which can be incorporated into the calculations

of the mean and variance for the overall model.

Bayesian Inference

One final method which has been examined to determine
whether it has value in drawing inferences from missile

tests involves the use of Bayesian techniques permitting the

e u——— P

inclusion either of prior knowledge of a sybsystem's per-
formance or of subjective estimates of that performance. As é
was noted earlier, the Beta family of distributions was se-
lected to represent test results partially because of the
fact that it is a "conjugate prior distribution”. According
to Hayes and Winkler, the desirable characteristics of such

distributions include: ]

1. Mathematical tractability - the type of distribution




should be one for which it is relatively easy
to specify a posterior distribution given a
prior distribution and a liklihood function;
and that the posterior is a member of the same
family as the prior distribution:

2. Richness - the family of distributions should
be able to represent a wide variety of states
of information in terms of central tendency
and dispersion, as well as a variety of shapes:

3. Ease of interpretation - the family should be
readily interpretable to the person whose
prior information is of interest as well as to
the analyst (Ref 4:459).

As was previously mentioned, the Beta family of distri-
butions can be used to represent a wide variety of states
of information, and the shapes available are adequate to
express these states in most common usages. It is also as
easily interpretable as most other distributions and the in-
fluence of varying the shape parameters is easily envisioned
by use of equations relating these parameters to the moments
of the distribution. Finally, the family is mathematically
tractable in that an updated Beta distribution will yield a
Beta distribution, and the process is simple because addi-
tion of prior and sample parameters respectively define the
posterior distributions. For a detailed development of the
points relating to mathematical tractability, see Tummala
(Ref 7), pp. 412, 414, and Miller and Freund (Ref 5),
chapters 8 and 9.
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Deferred until this time were possible anomalies
occurring when the use of the Beta distribution is unaccom-
panied by previous test data and the decision is made not
to use subjective prior information. The objective in this
case is to convey an informationless or "diffuse"” prior
state. If the true state of knowledge about the system re-
flected an equal probability that the probability of success
could assume any value between zero and one, then a uniform
distribution (a member of the Beta family) would seem to re-
flect the most accurate prior information. However, because
of the nature of the problem at hand, the assumption of a
uniform prior distribution can bias the test results. Two
factors contribute to this bias. First is that in the
Bayesian process, the posterior mean always lies between the
prior mean and the sample mean. For purposes of illustra-
tion, let us assume for the moment that a missile system is
acceptable only if it is successful at least 50 percent of
the times it is fired, and make the simplifying assumption
that the system is adequately represented by six nodes in
series. The success at each node, then, must be greater
than or equal to .5 and in actuality, the success at each
node must be in the vicinity of the sixth root of .5, or
around .89. If the probabilities of success at each node
are successively shifted towards the mean of the uniform
prior distribution, the overall probability of success must
be lower than the treatment of the raw test data would have

reflected. If a mean of the probability of success for a
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missile system in the region of .5 to .7 is a reasonable
goal, the assumption of a uniform prior distribution will
lead to a conservative estimate of the mean and may lead, in
turn, to the rejection of an acceptable system.

The second source of bias is that the shift of the
most probable region of the posterior distribution to a
lower range is aggravated by a small number of data points.
This is because the parameters of the uniform prior distri-
bution are always N=2, r=1;and the simple addition involved
in the updating process tends to reflect the influence of
the prior parameters on the posterior distribution to a
greater degree as the size of the sample decreases and/or as
the number of successes approaches either zero or the number
of trials.

An alternative approach is available to reflect the
absence of prior information. This procedure is to allow
the prior parameters N and r to approach zero. In practice
it is practical to let N = r = 0 to avoid the perturbations
caused by small values of the prior parameters whose in-
fluence we are trying to damﬁ. With zero weighting of the
prior information, the posterior distribution directly re-
flects the sample data. This practice, however, assumes a
prior distribution which is undefined because as the param-
eters approach zero the distribution is "U" shaped and at
X = 0 and at x = 1 the function becomes undefined.

In defense of this practice is the pragmatic accept-

ance that is accurately reflects the information available.

Je




Stated more eloquently, "But it seems to us that the real
test of a diffuse prior distribution in Bayesian inference
and decision is whether or not it affects the posterior dis-
tribution. This is because ... the ultimate aim of the
Bayesian is to use the posterior distribution in an infer-
ential or decision making process." (Ref 4:467).

For the above listed reasons, and following the lead
of the authors of the above quote, the absence of prior in-
formation will be represented as a Beta distribution with

both parameters equal to zero throughout this paper.




III. Applications

In this chapter specific applications of the approaches

which were developed in Chapter two will be addressed. The
results in each area will be included as the approach is
developed, and the last section of the chapter will discuss

the issue of sensitivity analysis.

Regression Analysis

The proxy data which is included in Appendix 1 was

analyzed using several of the regression techniques outlined

in chapter two. The objective of this effort was to identify

which of those recorded values are important in predicting
the success of a missile system for a particular mode of
operation. The criterion selected to measure the effective-
ness of each trial was the value of the Multiple Correlation
Coefficient (R2). This value would give an indication of
the variance of the response variable which had been ac-
counted for by the regression, and, hence, an indication if
desired confidence interval length could be achieved. For
initial research, the success or failure of the guidance,
warhead lethality, and the overall flight were considered as
response variables. All nodes were not considered individu-
ally in the interests of reducing computer analysis require-
ments.

The actual data reduction was accomplished using the

Statistical Package for the Social Sciences (SPSS) Regression
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routine with the stepwise method of variable inclusion. As
anticipated, the regression using the proxy data in raw form
was not particularly effective. The values of R2 obtained
by using SPSS default levels for the inclusion of independ-
ent variables was below .4 for all cases. Using rather low
levels for the inclusion of variables ("F" ratio equal to .5,
and the tolerance, defined in the SPSS manual as the variance
of an independent variable being considered for inclusion to
the variance not explained by the variables already in the
equation, equal to .05) decreased the value of R2 by about
20 percent for the various modes of operation, while gener-
ally deleting three to five variables from the regression
equation. After the initial approach, efforts included the
computation of dummy variables for the missile airspeed ad-
vantage/disadvantage at launch, blocking differential alti-
tudes into 2000 foot increments, grouping launch ranges into
five nautical mile increments, and grouping the aspect an-
gles into head-on (180°+30°), tail (0°+30°), and beam (all
remaining). This approach was not found to produce signifi-
cantly more meaningful results than use of the raw data.

The logarithms of all variables were computed and regressed
with the raw data and the dummy variables with no signifi-
cant change in the results. The final regression technique
which was employed involved a simplified attempt to generate
variables representing the range the missile actually covers
in its flight, the time of flight, and the terminal offset

angle. Initially, several simplifying assumptions were

35

ARG B SN

e e— v w ———

PPV s RN PRSI o s SIDT JVNERORCE IS AR S




made. The first was that the line of flight and airspeed of
the target aircraft did not change during the time the mis-
sile was in flight. Secondly, the missile was assumed to
depart the launch aircraft on its terminal line of flight.
Different assumptions were made concerning the air-
speed including constant airspeed, and constant acceleration.
With the above assumptions a triangle can be solved to de-
termine the effective range of the missile, its time of
flight, and terminal offset angle. These variables were in-
troduced into the regression routine along with those var-
iables which appeared to be significant based on the results
of previous trials. Attempts were made to include a de-
creasing acceleration for the missile and a constant rate
turn for the target. During the derivation of the neces-
sary relationships, the results for the constant acceleration
model were analyzed, which led to abandoning regression tech-
niques. Generally, the confidence intervals obtained were
too large to be of value in a practical application. Al-
though the regression analysis was based on proxy data, it
was felt that any specific techniques which were developed
could not be adequately tested because of the limited avail-
ability of both the histories of actual test programs and
of operational launches. For these reasons it was felt that
further efforts expended in this area would have marginal
returns and probably could not be validated and the approach

was dropped.
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Mathematical Modeling

To facilitate the analysis of the proxy data using den-
sity functions to represent the operation of a missile sys-
tem, the data contained in Appendix 1 can be reduced as shown
in Table 1. Each column of entries represents the results
of a different mode of operation, with the exception of the
fourth column, which represents the overall test program re-
sults. Each pair of entries represents the number of suc-
cesses for a given phase of the missile's flight, as well as
the number of missiles surviving to that point of the flight.

Each of these pairs of entries was used to define a Beta

probability density function for the probability of success-
ful operation at each node in the micro-model as defined in 1
Chapter 2. The final entry for each mode of operation is J
the number of successes for the warhead lethality node and |
the number of attempted launches. These final entries were
used as parameters for the macro-model approach of modeling
the entire test series with a single density function.
Efforts to analyze the proxy data have involved the
use of both Monte Carlo simulation and the analytic approach
to the model which was derived earlier. Both approaches in-
volved the analysis of the micro- and the macro-model.
Chronologically, the Monte Carlo analysis was well underway
before it was apparent that an analytic solution could be
reached. As discussed in Chapter 2, the use of a simulation
approach will inherently introduce some degree of uncertainty

into the final result. The Monte Carlo approximation was
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Table I
Success of Missile System at Nodes of Operation

Modes of Operation

Node Lookdown | TLookup |Maneuver | Overall
Launch 13/15 19/19 18/19 32/34
Launch Segq. 12/13 18/19 16/18 30/32
Guidance 10/12 17/18 14/16 27/30
Ngrii?miiiie 9/10 16/17 12/14 25/27
Impact 4/9 L/16 L/12 8/25
Contact Fuze L/4 3/l 3/l 7/8

Proximity Fuze 8/9 15/16 11/12 23/25
WH Lethality 8/9 14/16 12/12 22/25
Overall 8/15 14/19 12/19 22/34

valuable in validating the analytic model, but because of

the inherent uncertainty of the Monte Carlo approach, the

analytic approach is favored for an actual application.

The specific methods used in the Monte Carlo approach

involved the generation of 1000 random variables according

to the model developed for the micro-modeling approach.

Another 1000 random variables were generated from a Beta

density function using the overall success/failure results

of each mode of operation as parameters of the distribution.

The variance and mean of each of these populations were de-

termined using a computer library function.

Confidence
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intervals were determined by selecting the 101st and 900th

largest values from the populations as the limits of the
confidence intervals. Chi-square goodness-of-fit tests were
then conducted on each set of random variates to see if they
seemed to be from a Beta distribution, a normal distribution,
or a log-normal distribution. The procedure used a computer
library function whick evaluated each of the candidate dis-
tributions for ten equiprobable cell frequencies.

In the analytic approach, the mean and variance were
determined by using the relationships developed in Chapter
2. Confidence intervals were estimated by using a Simpson's
rule approximation of the appropriate function. The limits
were determined as being those values which excluded .10 of
the area from each side of the distribution. Excluding
equél areas from both ends of the area beneath the function
yields the shortest confidence interval only for symmetric
distributions. In this case, the normal distribution is the
only distribution which is always symmetric. The Beta dis-
tribution is symmetric only when the mean is equal to .5,
and the log-normal distribution is never symmetric. There-
fore, it will not generally be true that the confidence in-
tervals obtained when using the Beta or Log-normal distribu-
tions are the shortest which exist. However, given the
nature of the problem at hand, with means generally located
in the .5 to .7 range, it is not expected that the skew of
the resultant distributions will significantly affect the

length of the confidence intervals. This effect will be
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more accentuated as the mean is moved further from .5 and as
the number of samples decreases. Tests of the Beta distri-
bution with a mean of .75 and ten trials indicated that the
length of the shortest 80 percent confidence interval ob-
tainable did not vary by more than .01 from the confidence
interval obtained by'excluding equal areas from both ends of
the distribution. |

The actual reduction of the data was accomplished on a
TI Programmable-58 calculator. A listing of the program and
instructions for its use are included in Appendix 2.

A listing of the results of both the Monte Carlo and
the analytic analyses are included in Table II. Several
points about these results warrant comment. First, some in-
ferences can be drawn as to the nature of the density func-
tion for Py Second, the means are not equal for the two
types of model for any mode of operation. Thirdly, the
proximity of the means and the overlap of the confidence in-
tervals do not permit statistical separation of the means.
Finally, in no case does the resultant 80% confidence inter-
val about the mean meet the objective of being less than or
equal to .20 in length. Although the data are hypothetical,
the results of actual tests would be about the same order of
magnitude, and confidence intervals of about the same length
would result. The failure to meet the desired length of
confidence interval as well as the issue of sensitivity

analysis will be addressed later in this chapter.
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: Table II :
Results of Analysis of Proxy Dat

Mode of Operation

Micro-Model Lookdown Looku Maneuver Overall
. Yariance .01477 .01003 .01166 .00645
'+ | Mean .500 .699 .592 .610
5‘ o Beta cIh-.661 .56-.831 .45-.73| .50-.72
515 Normal 34-.66 .56-.83 45-.73 «51-.72
®| Log Normall .35-.66| .57-.83| .46-.73 | .51-.72
Variance .01489 .00942 .01196 .00642
o Mean . 507 .696 . 586 .606
+£180% c1 «35-.671 .57-.821 .Wh-.79] .%0-.7%
'é' Beta 2.80 5.80 9.70 .30
7 | Normal 3.78 9.20 16.26 .02
L | [1og Normalfl.BO 32.14 54.68 6.16
Macro-Model
o | Variance .o1556ﬂp.oo969 .01163 .00652
‘S | Mean «53 .74 .63 .65
.-3 O| Beta .37-.70] .60-.861 .49-.77| .s4-.75
S Normal AIt .37-.70] .61-.87| .50-.76| .54-.75
®| Log Normall| .39-.70| .61-.86| .50-.77 [ .55-.75
Variance .01596 .00980 .01181 .00623
3 Mean . 529 .732 .632 643
E 80% CI .36-.69 .60-.85 A49-,77
3| |Beta 4.86 12.66 10.78
A [i| Normal 5.62 33.5 9.5
Log Normal“50.62 83.0 35.82
L1




Based on the results of the Chi-square tests, the null

hypothesis that the randomly generated values are Log-
normally distributed can be rejected at the 99 percent level
of confidence in seven of the eight cases. On the other
hand, the hypothesis that the populations are Beta distrib-
uted cannot be rejected in any of the eight cases at the
same level of confidence. The hypothesis that the popula-
tions are normally distributed can be rejected in only one
case. Because of these results and because the tests a-
gainst a Beta distribution yielded lower values of the Chi-
square statistic in five of the eight cases, the Beta dis-
tribution 'is favored to represent the distribution de-
scribing P, for the hypothesized test results.

| The difference between the means is accounted for by
the difference in the treatment of the impact/fuzing loop in
the two methods of computation. 1In the case of the macro-
model, the loop is simply reduced to the number of missiles
surviving until the start of the loop and those surviving
the flight through the loop. These values are important
only in the sense that survival through all subsequent
phases can be no greater than survival through any given
phase. That is, these values are only indirectly repre-
sented in the final distribution function. The micro-model
of the loop takes the effects of impact and redundant fuzes
into account, so that the expected number of missiles sur-
viving the loop is not a linear function of impact or the

operation of either or both fuzes. The conditional nature
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of the activities represented in the loop dictates that the
mean of the loop be less than or equal to the greater value
of the mean of proximity fuzing and the product of the means
of the probability of impact and the probability of contact
fuzing. The relationship of these functions to the mean of
the loop is shown in Figure 2, with the mean of the loop
being represented as a funiction of the proximity fuze oper-

ation and impact/contact fuze operation.
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With the differences in handling the available infor-
mation, it is probable that some shift in the mean will oc-
cur and the case where the means are equal is the exception
rather than the rule. Because of the more detailed nature
of the micro-model, the value of inferences based upon the

single distribution cf the macro-model is questionable.
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The third point warranting comment is the fact that

the means of the resultant distributions, regardless of mode
of operation or method of computation, are not statisticg;ly
unequal. This is illustrated in Figure 3 which shows the
relative spans of the intervals. This may be a result of
the data being analyzed. Howe&er, the data is felt to be
reasonably representative of the results of a test series.
For this reason, the statistical hypothesis that the means
are unequal cannot be rejected, and a further attempt to

gather additional evidence to lead to its rejection was made.
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Fig. 3 Means and 80% Confidence Intervals.

The fourth comment relating to the analysis of the
proxy data is that this method did not meet earlier stated
objectives. This serves well as a transition into Bayesian
methods which, depending on the suitability of their appli-

cation, may enable us to meet the objectives.




Bayesian Technigues

There are two broad categories of information which
may be used as prior information in the models being used.
These include the use of historical test information and
sub jective information. While both categories of information
are manipulated in the same manner to physically determine a
prior distribution, there is considerable difference in the
methods used to obtain each type of information, and as will
be shown, each can have different effects on the posterior
distributions. For this reason, the collection of each type
will be addressed separately.

At this point, a note is probably in order concerning
the differences between historical and subjective data
sources. The two terms tend to define absolutes in a spec-
trum of degrees of objectivity versus subjectivity, while in
practice it is improbable that either extreme is ever en-
countered. For example, a subjective decision determines
what data is to be used from historical sources, and subjec-
tive inputs may be based on historical knowledge of very
similar subsystems, the results of captive carry sorties, or
knowledge of laboratory demonstrations of modified subsys-
tems under evaluation. Care must be taken in the selection
of data. This is particularly true in the case of using
historical data to determine a prior distribution for the
macro-model. This study has been primarily addressed to the

incremental evolution of a missile, or to those evaluations

which are concerned with the operation of a system already




in use, in which some subsystem has been modified. With
this assumption as background, it is questionable whether
historical data can be applied to the case of the missile
system being modeled by a single distribution, since it is
reasonable to expect some modification of the subsystems.
On the other hand, the inclusion of historical data in the
case of the micro-model seems to be a valuable approach
since it is improbable that all of the subsystems will be
modified.

The use of historical data in determining a prior
distribution is a relatively simple process, and can consist
of little more than the collection of data from previous
test efforts or from a history of operational launches. As
noted in Chapter two, the process of defining the prior
distribution for the Beta family simply consists of using
values for the number of successes (r) and the number of
trials (N) in expressions for the Beta function's parameters.
The update process requires the respective addition of the
number of successes and the number of trials included in
the prior and sample information. These sumé define the

shape parameters for the posterior distribution, and infer-

ences can be drawn from the posterior distribution. 1In the
case of the micro-model, the posterior for any or all nodes |
can be used as inputs for the formulae developed in Chapter j
two.

To explore the usefulness of Bayesian methods, the

proxy data set described earlier has been doubled in size by




replicating each record and re-analyzed. The results are

presented in Table 3. However, some of the statistics have
been deleted for the sake of clarity. Briefly, the results
of the simulation were that the hypothesis that the popula-
tion of random variables were Log-normally distributed was
rejected in seven of the eight cases at the 99 percent level
of confidence. The Chi-square statistic for the Beta distri-
bution was lower than that for the normal in seven of the
eight cases. These results still tend to favor the Beta
distribution as more accurately reflecting the distribution
for Py

Table III
Results of Analysis of Proxy Data After Simulated Replication

Mode of Operation
Micro-Model Lookdown Lookup Maneuver Overall
i Variance .00760 .00514 .00597 .00327
| Mean .50 .70 .59 .61
d|Beta 80% cI | .38-.61| .60-.79] .49-.69 | .53-.68
g Length of CI .23 .19 .20 .15
'8 Variance .00730 00547 .00555 .00336
E Mean «50 .70 .59 .61
2|80% CI .39-.61] .60-.79| .49-.68 .53-.68
AlBeta x° 8.6 6.92 6.58 8.6
Macro-Model
9| variance .00803 .00497 .00597 .00331
Y| Mean .53 .74 .63 .65
'g Beta 80% CI M2-.65 64-.83 +53-.73 .57-.72
Length of CI .23 .19 .20 «d9
'S | variance .00822 .00520 .00581 .00320
E Mean «53 73 .63 64
g eg%g%_ M41-.65] .64-.82| .53-.73 .57-.72
v | Beta X 15.24 13.48 6.98 6.84
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This example would represent a best case situation of ;
two consecutive evaluations of a system unmodified between
evaluations. In practice, it is probable that at least one
subsystem would be modified between evaluations, and there
would be no historical data to represent that subsystem. '
Hence, the results would reflect a somewhat larger confi-
dence interval than those shown. While there is still over-
lap between each of the modes of operation, the confidence
intervals of all modes appear to be approaching the objec-
tive of .20 in length. The overlap between the look-up and
look-down is down to a very small value. The confidence in-
tervals and means are shown in Figure 4.

At this point in the description of applications, a
short diversion will be made to illustrate the effects of
using a uniform prior distribution rather than the "diffuse"
prior as discussed in Chapter two. For purposes of illustra-
tion, the analytic approach will be used and the basic data
of 34 total launches will be analyzed. The means and con-
fidence intervals from Figure 3 have been reproduced at the
top of Figure 5 for purposes of comparison with the same
data treated with a uniform prior distribution. It can be
seen that the assumption of a uniform prior distribution for
the case of the individual modes of operation shifts the
means to a value .16 - .19 lower than does the treatment of
the same data with a prior distribution with N = r = 0 (the
"diffuse” prior). Because of the much larger sample size,

the mean for all launches dropped only .10. The effects of
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using a uniform prior distribution would not be so striking
if only one node were so treated. But it must be stated
that for applications such as the one at hand, some shift of
the overall mean will occur.

The use of a Bayesian technique, as was demonstrated
by doubling sample size, illustrates a method in which his-
torical data can be introduced into an ongoing analysis in
order to more accurately reflect the total information avail-
able for analysis. The same techniques can be used to in-
corporate information which is not as easily qualifiable into
the analysis. This information might be the opinion of an
experienced engineer. Such an opinion might be the result
of a detailed analysis, and could be extended to include
purely intuitive inputs. It could also represent group opin-
ion extracted by means of the Delphi method or a similar
approach. An excellent explanation of the Delphi method can

be found in The Delphi Method: An Experimental Study of

Group Opinion (Ref 1).

It is, of course, the subjective action of the deci-
sion maker to include or reject subjective information, but
given reliable sources and intelligent use of available in-
formation, further refinement of purely analytic analysis
can be achieved.

The immediate problem, given diverse data sources, is
to translate usable information into a quantitative format.
Basically, we have to answer the questions, "What is your

best guess of the outcome?" and "How sure of your response

50




are you?". Two approaches appear to be applicable. 1In
one approach the individual whose information is of interest
would be asked to estimate some parameters of a prior dis-
tribution. Direct estimation of the Beta parameters is prob-
ably a poor choice, because the distribution is not generally
familiar, but an estimate of the expected mean or of the num-
ber of successes out of some arbitrary number of trials
would allow us to establish some measure of central tendency
for a prior distribution. The second question could be an-
swered by estimating a variance or a standard deviation.
The use of such an approach requires a subject who is knowl-
edgeable enough in his area of expertise for his information
to be of value, and who is knowledgeable enough about sta-
tistical applications to be capable of accurately quantify-
ing his responses. Assuming that statistical applications
is an area not widely understood in the depth required for
accurate responses, then such an approach would either ex-
clude information because the subject not knowledgeable in
statistical procedures could not be questioned, or the ap-
proach would introduce errors due to the depth of knowledge
of some subjects.

One step in reducing the impact of the transition from
nonquantitative information to quantitative information is
to present the subject with drawings of a group of density
functions and have him select the one he feels best repre-
sents the most probable outcome of the test series. The

density functions presented to the subject would be
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representative of several possible outcomes, in terms of
central tendency and dispersion. Such an approach was de-
veloped by Paul F. Dienemann of the Rand Corporation (Ref
2). Mr. Dienemann's approach was aimed at the estimation of
the costs of future systems. A subject was presented with
graphs of nine Beta density functions. Three of these dis-
tributions had modes at .25; three more at .50; and finally,
three at .75. Each of these groups had three degrees of
dispersion. From these nine distributions the subject would
select the one he felt best represented his subjective esti-
mate of the cost of a system.

Such an approach assumes that the subject has some
familiarity with the principles of probability, and that he
has a knowledge of the properties of a probability density
function. It does not appear to be an unwarranted assump-
tion that individuals associated with the operational test
and evaluation process do have this knowledge. Efforts were
made to apply this approach to the present problem. However,
Dienemann's functions were found to be unsatisfactory for
the modeling application discussed in this thesis. 1Ini-
tially it was thought that the reasons for the unsuitability
lay in the fact that there was not a large enough selection
of functions from which to choose. To meet this shortcoming,
a series of functions were developed, with modes at .5, .6,
.7y .8, and .9 (mirror images of these functions could be
obtained by setting r' equal to (N-r) for M' = 1-M). This

approach was also found to be unsatisfactory because there




was an unacceptable shift of the mean to a lower value than
would have been experienced had the raw data been treated
alone. This shift was accounted for by the fact that prior
distributions under study were constructed in such a way
that the mode (the most probable value, as well as the point
where the function reaches a maximum value) was located at
the several points of interest. It can be demonstrated that,
with the exception of the mean being collocated with the
mode at .5, the mean is always between .5 and the mode for
the Beta distribution. Further, the distance between these
values increases proportionally with the distance from .5.
With a shift in the mean towards the central value, this
situation becomes very similar to the argument against using
a uniform prior distribution to represent an informationless
prior state. The result is the same in that the use of a
prior distribution whose mode is located at the point of in-
terest will result in a shift of the final model mean to a
lower value. The next step was the construction of a series
of probability density functions whose means rather than
modes lay at the points of interest. For means between .5
and .7, this approach may have some merit. Three potential
probability density functions are illustrated in Figures 6,
7, and 8. The means in these figures are denoted by solid
lines; the modes, by a tick at the mode. It is interesting
to note the progressive shift of the mode of the distribu-
tions to higher values as the mean is shifted farther away

from .5. As previously indicated, however, prior
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distributions in this region are probably not of significant
value in the estimation of the Beta parameters for the in-
dividual nodes.

Representations of the density functions with means
exceeding .8 are felt to have the most value in this partic-
ular application. However, an attempt to arrive at accept-
able distributions in this region presented problems. These
problems arose because the parameters of the distributions
under consideration were held to a low value.

It was felt that the primary utility of the input of
subjective information would be in the case where no prior
history of a subsystem was available. The nature of the
problem requires that the parameters of the sample distribu-
tion be relatively small, and it was felt that an approach
where the prior would not dominate sample information would
be most appropriate. Unfortunately, when the mean of a
Beta distribution with relatively small parameters is moved
near the end points, the mode approaches either zero or one,
and becomes undefined for analytic purposes. Graphically,
the distribution becomes "J" shaped, While this is an ac-
ceptable probability density function, it does not meet the
author's expectations of what a prior distribution "should
look like". Figures 9 and 10 illustrate this point. The
parameters were varied to determine the point at which the
resulting distributions would retain an inverted "U" shape.
Using .99 as a maximum acceptable value of the mode leads to

the following parametersi N=11, r

1]

9.9. To be able to
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present a variety of dispersions, it is necessary to at
least double the "N” parameter and scale the "r” parameter
as necessary to keep the mean at .9. Figure 11 illustrates
three such density functions with the parameters in the
ranges: 11<N<22, 9.9<r<19.8.

Neither set of representations of distributions with
their means at .9 appears to be acceptable for general use.
Reasons for this unacceptability are threefold. First, "J"
shaped distributions are not felt to represent an intuitive-
ly appealing density function. Secondly, it can be seen
that even though the parameters of the distribution repre-
senting low variance are double those for the high variance
distributions, there is not a readily apparent difference in
shape. This is to some degree true of the comparisons be-
tween the highest variance function of Figure 9 and the
lowest variance functions of Figure 10. While it is true
that a greater variety of shapes could be represented, it is
felt that the necessary increase in the parameters could have
significant impact on the posterior distributions. Finally,
there is a strong natural tendency to mentally place the
mean of the distributions with means near 1.0 closer to 1.0
than it actually is. Figure 11 illustrates this point. The
sharp peaks located at .99, .95, and .94 tend to dominate
the illustrations and imply that the mean is closer to the
mode than it actually is, or even possibly equal to it. The
effect of this last point could easily lead to biasing

results in a downward direction in the micro-model
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In summary, Bayesian technigues appear to have a
varying value, depending on the nature of the model selected
to represent missile system operation. Because of the ques-
tionable validity of historical data, as applied to modeling
an entire test program with a single density function, his-
torical input in this context is probably not a viable ap-
proach. On the other hand, since the mean of overall system
operation can be expected to be located in the central re-
gion, subjective input of data may be a valuable approach.
If the decision is made to model system operation as a series
of nodes, the inclusion of historical data would appear to
be appropriate at the nodes representing unmodified subsys-
tems. But, because the means of distributions representing
the nodes must achieve a relatively high value, coupled with
the author's inability to identify acceptable representative
density functions in the region of interest, subjective in-

put of information is questionable in this context.

Sensitivity Analysis

It can be recalled from the illustration given in this
chapter's section dealing with Bayesian techniques, that
doubling the number of trials decreased the length of the
confidence interval of the resulting distribution. With
this background, one can intuitively deduce that the vari-
ance is inversely proportional to the number of trials.

This deduction is generally true, but the variance of a Beta
distributed random variable is also a function of its mean

as was shown earlier in this chapter by the relationship




2 _p(i-p)
o N1

It can be seen that the variance is a function of the
mean and of the number of trials. The numerator of the
above expression reaches a minimum of zero at the 0 and 1
end points and a maximum when the mean equals .5. An in-
creasing number of trials will decrease the variance for a

constant mean. This relationship is illustrated in Figure 12.
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The length of a confidence interval for any given level

of confidence is directly related to the variance in that an
increasing variance will increase the length of an associ-
ated confidence interval. This fact, coupled with the re-

lationship of the variance as a function of both the mean




and the number of trials, leads to a relationship between
the length of a confidence interval at some level of confi-
dence and the mean and number of trials. Figure 13 illus-
trates this relationship for the Beta distribution and 80%
confidence intervals. The figure can be read by laying a
straight edge vertically along a mean of interest (bottom
scale). The points where the straight edge intersects ap-
propriate values of N determine the limits of the confidence
interval and are read from the scale on the left. The fig-
ure also can be used for a quick approximation of the re-
sults of a test program or for estimations in sensitivity
analysis.

It can be seen from Figure 13 that a larger number of
trials will tend to reduce the length of the confidence in-
terval. However, in this application, as in many others,
there is a limited amount of resources available. Therefore,
it can be determined prior to a test program approximately
what number of trials will be available for analysis. There
also exists a practical range of success rates, since it is
improbable that the mean will be very close to 1.0, and it
is hoped that it will not be near 0.0. Generally, this will
define an envelope of interest which is roughly a parallo-
gram, since the lines in the central area determining the
upper and lower limits of the confidence interval are not
severely curved. Examination of a most probable region of
results, for example, between .45 and .75 shows the value of

increasing the number of tests is greatest for lower initial
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values of N. The effect of the diminishing value of addi-
tional tests for purposes of reducing the absolute length of
the confidence interval is also illustrated. As an example,
increasing the number of tests from 5 to 7 in this area re-
duces the length of the confidence interval approximately
the same amount as increasing the number of tests from 50 to
100, or from 100 to 500. The final length of the confidence
interval is not particularly sensitive to the mean in this
range, however. Since it can be shown that the length of
the confidence interval is most sensitive to the number of
tests at small values of the number of tests, it may be prof-
itable to use Figure.13 for planning purposes. In such a
capacity, it could be used as an aid to determining the num-
ber of missiles to be fired in each mode of operation. For
example, a particular mode may be of interest in a particu-
lar evaluation, and it may be desired to acquire as much in-
formation as possible about this mode. Reference to Figure
13 will indicate the minimum number of firings required to
gain acceptable test results in terms of length of confi-
dence interval for other modes. All remaining resources can
then be devoted to the particular mode of interest. 1In such
situations it may be wise to withhold some missiles to allow
for "no test" firings, since losing one or more data points
in the areas planned around minimum requirements may have
significant impact on test results. Those missiles withheld

can be allocated as desired during the test program to

arrive at acceptable results.




IV. Conclusions

This study has been aimed primarily at the identifica-
tion of a method of data reduction in the specific case of
the evaluation of tactical air-to-air guided missile systems.
The objective has been to identify a method of estimating
the probability of kill in the three modes of operation ---
look-up, look-down, and against a target maneuvering in
excess of 4 g's; and to estimate the confidence interval
about these probabilities of kill which do not exceed .20 in
length at the 80 percent level of confidence. ;

The first method explored in meeting this objective )
was regression analysis. The approach was not found to
offer a suitable solution to the problem at hand. The short-
comings of the approach in meeting the objective may have
been partially due to the nature of the data. However, the
large number of independent variables which are recorded, and
the other variables which are not recorded but may have sig-
nificant impact on the system's operation,are felt to make
the approach of questionable value in this application. If
those variables which have significant impact on system op-
eration could be identified, it is felt that this approach
would be valuable in predicting system operation. This
study did not identify those variables.

Next, mathematical modeling was explored, and a model

representing system operation was defined. This model was

analyzed using Monte Carlo and analytic techniques. The




analytic approach was accurate and simple enough in handling,
that it was used in preference to the Monte Carlo method.
However, the results of the Monte Carlo simulation were val-
uable in validating the analytic model, and may be the only
feasible approach in more complicated models.

In the analytic approach, each of the nodes of the
previously defined model was modeled as a Beta density func-
tion. Relationships were developed to determine the mean and
variance of a Beta distribution, which was used to represent
overall system operation. Inferences were drawn, based upon
both this distribution as well as a single distribution
whose parameters were the number of successful missions and
the total number of launches. Findings of this approach in-
dicated that the pure analytic approach did not meet the ob-
Jectives. Specifically, even though a mean was obtained for
each mode of operation, there was overlap of the confidence
intervals regardless of the mode of operation or the method
of reduction. Further, it was noted that the lengths of the
confidence intervals were in excess of .2 in all cases,
ranging in length from .26 to .32. Reference to Figure 13
in Chapter 3 illustrates that with an expected mean in the
range of .50 to .70, the length of the resulting confidence
interval is relatively insensitive to the actual value of the
mean. The length of the confidence interval is primarily
sensitive to the number of trials. To achieve a confidence
interval of .20 length requires at least 30 trials through-

out the range, and the number approaches 40 trials at a mean
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of .5. Analysis of the combined results of all 34 launches
further illustrates this point with its confidence interval

of .21 length in both methods of reduction.

Because of the above-listed shortcomings and the known
limited number of launches, this method appears to have
suitability only in the inference from overall test results.

Finally, Bayesian techniques were examined as a meth-
od for reducing the lengths of the confidence intervals.
Such methods permit the inclusion of data from either his-
torical or subjective sources. To demonstrate the inclusion
of historical data, the proxy test results were assumed to
have been replicated and then re-analyzed. Since this would
constitute a complete replication of the test series, it may

be a best case situation in that the values of the parame-

ters describing all nodes would be doubled. On the other
hand, it does not recognize historical data for more than
one previous test of any subsystem. Results for this analy-
sis were encouraging, in that the confidence intervals for
two modes of operation met the objective of .20 in length. -
The one case which did not meet this objective was centrally
located (with a mean at .50), and had the fewest number of
trials. Both of these factors tended to increase the length
of the interval, but the resulting length was still only
.23. It was also noted that there was only a .01 overlap in
confidence intervals for the look-up and look-down modes of
operation. Since these are the only two mutually exclusive

modes, it is improbable that conditions would arise where the
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means for all modes could be statistically separated.

Further, it is unknown how realistic the .18 spread between v

the means of the proxy data actually is. If this spread is
larger than that encountered in practice, then the problem
of statistical separation would be compounded. On the other
hand, if this is a smaller spread than that which would
normally be expected, then the inclusion of historical data
to update the nodes of the model may be a profitable
approach.

Because of the expected incremental changes in a mis--
sile system, the application of historical update methods to
a model representing only the number of successes and number
of trials is questionable. However, in this case, the in-
clusion of subjective data appears to be practical. Graphs
of appropriate probability density functions were presented
in Figures 6, 7, and 8 in Chapter 3, and the use of these or

similar functions appears to be a good medium for quantify-
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ing subjective information. For the case of the model of
missile system operation consisting of a series of nodes, it
is questionable whether subjective information can be accu-
rately quantified. This is because the requirement to pre-
sent an acceptable density function with a mean equal to or
greater than about .80 could not be met. It is necessary to

be able to present distributions in this region to allow the

subject to select from a variety of distributions in the
most probable area of successful operation. As indicated

earlier, each subsystem of the missile must function
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successfully approximately 89 percent of the time to arrive
at a .50 overall probability of success. It was felt that
the distributions represented in Figures 9, 10, and 11
would lead a subject to select a distribution with a mean
lower than his true estimation of the mean.

Based on the above reasons, it is concluded that, of
the two Bayesian techniques explored, each is applicable to
only cne type of model under consideration. That is, sub-
Jective input of data may be valuable for the consideration
of the macro-type of model, and historical update is most
appropriate for the micro-model.

In summary, methods have been explored to attempt to
statistically separate the expected probabilities of kill
for various modes of operation. It is improbable that the
number of missiles available would be sufficient to allow
such a separation in a purely analytic model. However, the
inclusion of data from other sources presents a vehicle by
which to refine the results obtainable from a purely ana-
lytic model. Depending on the availability of data and the
type of model chosen, it is possible that the combination of
an analytic approach and Bayesian techniques may meet the
earlier stated objective. However, it is highly improbable
that this approach (or any other) could permit the statisti-

cal separation of the means in all situations.

Recommendations

While the methods proposed in this study are not guar-

anteed to meet the stated objectives, it is felt that the
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approaches are technically sound and may be of value in a
more limited scope than was originally envisioned. Specifi-
cally, the determination of an acceptable confidence inter-
val about the overall probability of kill for the system re-
presents én improvement over current methods of data reduc-
tion. It is also probable that the techniques will be us-
able in some situations to infer probabilities of kill, as
well as confidence intervals for the modes of operation. It
is, therefore, recommended that the techniques included in
this paper be considered by AFTEC to support their data re-
duction efforts.

Secondly, it is recommended that further research be
conducted in the area of developing adequate representations
of distributions whose mean is near the endpoint of a closed
range. These representations would be presented to a subject
to allow him to quantify his subjective opinion of the out-
come of a test series. An objective of such an effort
should be to accurately extract that information, and the
perceptions of subjects should be recognized. It is felt
that the domination of the mean by the mode of the graphs
presented in Chapter three would make those functions of
questionable value in extracting subjective information.
Possible areas of research could include the artificial de-
crease of the parameters of a Beta distribution. High values
of parameters could be used to shape the function, but these
could be reduced for the physical update process so that the

severe impact of the true shape parameters would be brought
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more closely into balance with the sample data. Such an
approach may not be technically proper, but as noted earlier,
" « « . the ultimate aim of the Bayesian is to use the pos-
terior distribution in an inferential or decision making
process" (Ref 4:486). For this reason, it is necessary to
accurately extract available information. Towards this end,
ad justments may be justified on the basis of the perceptions
of subjects.

In the same area, an appropriate research area would
be the application of closely related families of distribu-
tions to represent prior subjective information. Other fam-
ilies of curves may adequately represent the type of infor-
mation addressed above, and a transformation of parameters
or truncation of distributions may be possible to adequately

quantify the information.
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APPENDIX A

Proxy Data

This appendix contains a description of the method
used to generate the proxy data which was analyzed in the

body of this thesis. A listing of the data is also included

in Table 5. All data was randomly generated from possible
launch conditions as determined from unclassified sources.
Thirty four launches were chosen for analysis because this
number appeared to be reasonably representative of a test
series. The 34 launches were divided into four separate

categories which were further subdivided to simulate a test

plan which would test the missile in all flight regimes.

The four major categories were designed to test the missile
guidance function (9 missiles), the proximity fuzing function

(8 missiles), the warhead lethality (8 missiles), and overall

e .

missile system effectiveness (9 missiles). Other functions
which were represented by nodes in the micro-model which was
developed in the body of the thesis were considered %o be
randomly distributed throughout the test program. For ex-
ample, it was assumed to be equiprobable that a launch,
launch sequence, or contact fuze failure would occur on any
launch. On the other hand, the probabilities of successful
guidance, proximity fuzing, and warhead lethality were felt
to be under more direct control of the test planners and

these probabilities could be altered by the selection of the
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launch parameters and encounter geometry. Two levels of the
probability of success of these nodes were chosen to repre-
sent that subsystem's operation. It was reasonei that if a
particular subsystem was of primary interest in 2 given
launch, this launch would be conducted under circumstances
which wouid more severaly test that subsystem. But the
stress on subsystems whose primary function occurred chron-
ologically before the primary phase of interest would be
relaxed in order to increase the probability of reaching the
phase of interest. To equalize the effect of altering the
probability of successful operation, all subsystems were
given the higher probability of success regardless of their
chronological position in the model if the launch was not de-
signed to test that subsystem. The means of the probabili-
ties of successful missile system operation at the individ- .-‘

ual nodes were set at the following arbitrary levels:

Launch .95
Launch Sequence .90
Guidance

high .80

low .60
No Premature Proximity Fuzing .90
Impact 4o
Contact Fuze Operation .98
Proximity Fuze Operation

high .85

low .65
Warhead Lethality

high .95

low 75
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Subdivision of the main categories was accomplished to
predetermine an altitude profile and to insure an appropri-
ate Look-up (LU)/Look-down (LD) mix. The launch altitude
blocks considered were low (surface to 10,000 feet), medium
(2,000 to 30,000 feet), and high (35,000 to 50,000 feet).

Target altitude blocks were identical except for the high al-

titude block where the target had a maximum altitude of 75,000

feet. All launches except the combined system launches in
the high and low altitude blocks were predetermined to be in
the LU or LD mode. The remaining launches including the
combined system launches had randomly distributed modes of
operation based on randomly selected launch and target
altitudes (RND).

Table 4 presents a more detailed enumeration of the
predetermined launch conditions where Pg refers to the
probability of successful guidance,Ppp refers to the proba-
bility of no premature proximity fuze operation, and Pie

refers to the probability that the warhead is lethal.

Table IV
Predetermined Launch Conditions
Total Alt. P F Fie
Test Number| Number |Block @bde High |Low| High |Low [High |Low
7 6 Low | LD x| x
i sl R SO N 3T W b x | x
3 5 Med RND| x
pusing 9 3 High [ LU | x
4 - Med | RND| x
Tethality 8 3 High 11U | x
Combined 9 L Med | RND
System D Med | RND| x
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The airspeed of the launch vehicle was randomly gener-
ated from a uniform distribution of representative airspeeds
within the blocks. The ranges of airspeeds were .6 mach (m)
to 1.5m at low altitude, .75m to 2.0m in the medium altitude
block, and .85m to 2.5m in the high altitude block. Target
airspeeds were randomly generated from a normal distribution
with a mean of the launch platform mach and a standard devia-
tion of .25m.

Slant ranges were randomly generated from uniform dis-
tributions which varied with the altitude. The ranges were
from 2 to 8 nautical miles (nm) in the low altitude block,

5 to 17 nm in the medium altitude block, and from 5 to 28 nm
in the high altitude block.

All high altitude launches were assumed to be against
non-maneuvering targets. For the lower two altitude blocks
the target was randomly determined to be either maneuvering
or non-maneuvering. Target g loading was then randomly se-
lected from a uniform distribution between 1 and 4 g's for a
non-maneuvering target, and between 4 and 7 g's for a maneu-
vering target.

The aspect angles were generated from a normal distri-
bution with a mean of zero and a standard deviation of 25 &
degrees. One hundred and eighty degrees were added to all
negative numbers. This procedure was selected to concen-
trate the launches about the head-on and tail-on aspects
while still giving a reasonably wide dispersion to the beam

aspect encounters.
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After the launch parameters had been determined, the
results of each launch were determined by generating random
numbers from a uniform (0,1) distribution. One random num-
ber was generated for each node in the mission of each mis-
sile. If the random number representing the operation of the
missile at a node exceeded the earlier defined mean proba-
bility of success applicable to that node, the missile was
assumed to have failed at that point in its mission. For
example, a missile which was fired to test the guidance sys-
tem would have a .60 probability of successful guidance. If

the random number associated with the guidance node of this

missile exceeded .60, the missile would have been assigned a
failure due to guidance. If the random number were equal to
or less than .60 the missile would be assumed to have guided
successfully.

The results of this procedure are presented in Table

5 which follows.
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APPENDIX B

Program to Evaluate Parameters of
Model Beta Distribution

This appendix includes a listing of and instructions
for the use of a program to evaluate the mean, variance, N,
r, and the resulting confidence intervals for the model pro-
posed in Chapter 2 of this thesis. The program was written
for a Texas Instruments Programmable-58 calculator (TI-58).
Due to its length, it would probably be more convenient to
use a TI Programmable-59 (TI-59) calculator and transfer the
program to a magnetic card in order to avoid the requirement
to manually enter the program for each use.

The format of a hand-held calculator routine was chosen
because the program is not particularly complicated and it
bypasses the turn-around time requirement associated with the
use of a large scale digital computer. Also this format has
the advantage of mobility, a feature Jjudged to be desirable
by personnel of AFTEC for use in field tests and on-the-spot
sensitivity analyses.

The listing of the program is contained in Figure 14.
The program listed will evaluate the micro-model for five
series nodes prior to the impact/fuzing loop. The extra node
was entered to accommodate launch platform/missile system
evaluation as well as a missile system evaluation. The
extra node can be bypassed by entering "1” for both the

number of success and trials at the first node. The
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program can be modified to accommodate any number of series
nodes directly by changing program step 111 to the desired
number of series nodes prior to the impact/fuzing loop.

To enter the program into the TI-58, the calculator
must be repartitioned to accommodate 320 program steps and
20 memory locations. The TI-59 does not require reparti-
tioning. After the program has been entered the calculator
is initialized by pressing "2nd, B'". The display is the
number of series nodes prior to the impact/fuzing loop. Test
results are then entered as the number of successes and the
number of trials for each node. Each entry is followed by a
"R/S" command. The pairs of entries should be made in the
following order:

Launch platform (optional--bypass by entering "1"
and "1 u)
Missile launch

Launch sequence

Guidance

No premature proximity fuzing
Target impact

Contact fuze operation
Proximity fuze operation
Warhead lethality

The display after the eighteenth entry is the variance
of the final distribution model. Successive "R/S” commands
will result in displays of the mean, the parameters N and r,
and finally in approximation of the Beta coefficient to be

used for calculating confidence intervals.
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The approximation of the Beta coefficient is obtained
by evaluating the Beta function with the values of N and r
already computed and with a coefficient of one in a Simpson's
rule approximation. The reciprocal of the result is then
used as the coefficient in subsequent calculations. The
accuracy of this approximation is a function of the number
of increments used to evaluate the function. This program
uses 20 increments. Increased accuracy can be obtained by
increasing the number of increments (program steps 304 and
305) with an accompanying increase in the time required for
the computation, or by direct calculation of the required
Gamma functions. Such direct computations of the Gamma
functions and the Beta coefficient for the three modes of
operation and for the overall results of the basic data pre-
sented in Chapter three and for the same four cases with
each node being replicated did not result in an error greater
than .0001 (.01%) for any of the eight cases.

This is the end of the formal program. However, con-
fidence intervals can be calculated by using the Simpson's
rule Master library routine. At this point the calculator
has the Beta coefficient, (r-1), and (N-r-1) stored in loca-
tions used by the Simpson rule subroutine (program steps
000 through 021). The confidence intervals can be estimated
by determining those points at which .10 of the total area
under the function is excluded from each side of the func-
tion. Accurate initial estimates of the limits can be de-

termined from Figure 15 in Appendix 3. If the integral of
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the function is approximated from 0.0 to the estimated lower
limit and from the estimated upper limit to 1.0, the central
portion of the function is avoided and six to eight incre-
ments provide an accurate estimate of the area excluded.
This program will not operate properly in any of the
following cases.
1. All proximity fuzes function properly:
2. All missiles impact the target and all contact
fuzes function properly:
3. All proximity fuzes and contact fuzes fail.
Each of these conditions results in a mean of either
1.0 or 0.0 for the impact/fuzing loop and 0.0 variance. The
parameter N for the loop is computed from the following

equation:

N=&—(§P-)--1
o]
The required division of zero by zero results in an

error condition in the calculator. The results of cases
one and two can be calculated from the relationships de-
veloped in Chapter two. Case three will result in a 0.0

mean and a 0.0 variance for the system.
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APPENDIX C

Confidence Interval Graph

The program used to generate graphs of the 80% Con-
fidence Intervals of the Beta distribution as a function of
the mean and number of trials is contained in this appendix.
The data for the 1limits of the confidence intervals were
computed using the International Mathematical and Statis-
tical Library (IMSL) routine MDBETI which evaluates the in-
verse incomplete Beta function. For the case of 80 percent
levels of confidence the incomplete Beta function was eval-
uated at .1 and at .9 for each of 21 values of the mean for
each of the 10 values of N considered. Similar graphs could
be generated for other confidence levels by changing the
values at which the incomplete Beta function is evaluated.

The exclusion of equal areas from both ends of the dis-
tribution will yield the shortest possible confidence in-
terval only for symmetrical distributions. A Beta distribu-
tion is symmetrical only when the mean equals .5. It is
expected that this graph will be used in the context addressed
in the body of the thesis where final means will generally
fall in the .4 to .75 region. The skewness of such distri-
butions will not have a large impact on the length of the
confidence interval determined from this graph. As an exam-

ple, a case with 10 samples and a mean of .75 will be sub-

Ject to a comparatively rather large degree of skewness




&

T

because of the small sample size and the shift of the mean
by .25 from the central value. The shortest confidence in-
terval obtainable for this case does not vary by .01 from
the confidence interval obtained by excluding equal areas
from both ends of the function. It is not felt that the
graph (Figure 15) can be read more accurately than + .01.
Figure 15 can be used to estimate 80 percent confidence
intervals from any Beta distribution for which the mean and f

the number of trials are known. Use of the graph will be

illustrated from one of the cases analyzed in the body of

the report. The results of the basic data in the lookdown
mode for the micro-model led to a mean of .50 and an N para-
meter of 15.9. A straight edge can be laid vertically along
a line representing the mean (@ ). The intersection of the
straight edge with appropriate values of the N curves de-
fines the limits of the confidence interval (@ and @)
which are read from the vertical scale on the left of the
graph (C) and C)). In this case, the straight edge inter-
sect approximate values of N = 15.9 at .34 and .66. A
Simpson's rule approximation of areas from 0.0 to .34 and

from .66 to 1.0 yielded .0976 and .0988, respectively.
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PROGRAM CI(INPUT,OUTPUT,TAPE7 ,TAPES=INPUT, TAPEE=0UTPUT,
%ZPLOT)

DIMENSION AN(10),Y1(23),Y2(23),X(23)
DATA AN’SQ,7.’1°. ,150 ,20.,30.,“0-,50.'1000 ,500-/
FORMAT (5F10.5)

FORMAT (*0%35Xy "MEAN" 96Xy “LNR LMT* 43X, "UPR LMT*)
FORMAT (™ N = *,FL,.0)

FORMAT (F10.3)

FORMAT(3F10.5)

¥1(22)=0.

Y2(22)=0.

X(22)=0.

Y1(23)=,125

Y¥2(23)=.,125

X(23)=.2

CALL PLOTS(30)

CALL PLOT(0eyp=30y=3)

CALL PLOT(0e9ley=3)

CALL AXIS(U..D..QHHEAN,-“,S.,0. ’00902)
CALL AXIS(0es0¢919HCONFIDENCE INTERVALy1Syb6ey
$90e904y0125)

CALL PLOT(0e98e93)

CALL PLOT(S5¢98092)

CALL PLOT(5¢90e42)

DO 20 I1=1,10

ANUM=AN(IY)

WRITE(6,120) ANUM

WRITE(6,119)

Yi1(1)=0,

Y2(1)=0.

X(1)=0,

IF (ANUM,EQ.0,)GO TO 20

DO 10 I2=2,20

CNT=FLOAT (I2)

X(I2)=,05%CNT=,05

AMEAN=X(I2)

ALPHA=AMEAN*ANUM

BETA=ANUM=-ALPHA

IF(AMEAN.EQe0s sOR.AMEAN: EQe1.)G0 TO 10
CALL MDBETI(.1,ALPHA,BETA,Y1(I2),4IER)
CALL MDBETI(.9,ALPHA,BFTA,Y2(I2)yIER)
CONTINUE

Yi(21)=1,

Y2(21)1=1.

X(21) =1,

. CALL LINE(X9Y192191,0,72)

CALL LINE(XyY2521,1,0,72)

D0 15 I3=1,23 :
WRITE(6,140)X(I3),Y1(I3),Y2(13)
CONTINUE

CONTINUE
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30

“0

00 30 I=1,19 -
XDELTA=FLOAT(I)*., 25

CALL PLOT(XDELTA50.43)

CALL PLOT(!D!LTI,G.,Z)
CONTINUE

00 40 I=1,19

YOELTA=FLOAT(I)*. b
GALL PLOT(0.,YDELTA,3)
CALL PLOT(!.,YDELTA,Z)
CONTINUE

CALL PLOTE(N)

STOP .

END
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